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Abstract

The common trend in the scientific inquiry of urban areas and their populations is to use real-
world geographic and population data to understand, explain, and predict urban phenomena. We argue
that this trend limits our understanding of urban areas as dealing with arbitrarily collected geographic
data requires technical expertise to process; moreover, population data is often aggregated, sparsified,
or anonymized for privacy reasons. We believe synthetic urban areas generated via procedural city
generation, which is a technique mostly used in the gaming area, could help improve the state-of-the-art
in many disciplines which study urban areas. In this paper, we describe a selection of research areas
that could benefit from such synthetic urban data and show that the current research in procedurally
generated cities needs to address specific issues (e.g., plausibility) to sufficiently capture real-world
cities and thus take such data beyond gaming.

1 Introduction

Urban areas are complex systems composed of densely-situated populations which are mobile and interact with
each other. It is the structure (i.e., form) and function (i.e., how people use areas) of urban areas that impact
how people use, extend, and manipulate such environments. Many disciplines such as geography, data science,
and the social sciences more generally study urban areas and its populations. The intention of these disciplines
is often to understand, explain, and predict various urban phenomena ranging from gentrification [3] to traffic
jams [36]. A common approach followed by these disciplines is to inquire about a specific scientific question,
capture or obtain empirical data related to the question, and use or create a data-driven model that advances
the current body of knowledge.

Such empirical data can be placed into one of two groups: geographic data and population data. Here
we refer to geographic data to include maps of administrative areas, land use, location footprints, point-of-
interests, various levels of road networks, and satellite images. Geographic data is often publicly available
(especially in developing and developed countries). While population data includes socioeconomic data such as
census information (i.e., general population characteristics) and mobility data in the form of check-ins, travel
diaries, public transportation information, and traffic sensors to name but a few. However, unlike geographic
data, population data is often at times restricted and aggregated as it contains sensitive information of people or
sometimes not available at all (as is the case in less developed countries [40]).

Although both geographic and population data are frequently used in research, their use poses several chal-
lenges. The recent emergence of volunteered geographic information (VGI, [19]) makes large-scale geographic
data possible via initiatives like OpenStreetMap; but due to its relaxed contribution rules, such spatial network
data is flexible but has no guarantee of correctness. Moreover, vandalism is one of the latent challenges VGI

34



is facing [43]. Common problems in terms of quality include missing/wrong tags (i.e., misclassification of
features), digitizing error (e.g., overshoot/undershoot), topologically inconsistent data (e.g., spaghetti model)
and so on. These require costly post-processing (e.g., cleaning data) when being utilized for analyzing urban
areas. While tools for and mechanism of quality assurance and quality control (QA/QC) have been developed
to improve quality of real datasets, they require technical expertise in data processing which is often lacking in
many fields exploring urban areas. Population data pertaining to individuals’ movement is mostly aggregated,
sparsified, or anonymized to preserve the privacy of individuals. Many nontechnical scientists face one or more
of these challenges when using data in each urban area they focus.

We would argue that, while focusing on single urban areas is a necessity for specific applications (e.g.,
for urban planning), in other instances it might be more desirable to work on standardized synthetic urban
areas should they have sufficient details for the question at hand. For instance, the self-driving car technology
aims to improve the safety of the real-world roads and reduce fatal accidents; it is quite possible to test self-
driving algorithms and their safety on an entirely synthetic simulated urban area that resembles the real-world
urban areas. Moreover, this standardized synthetic urban area could be used to benchmark different algorithms
by different companies in the self-driving marketplace. For such a synthetic dataset to be created and used,
urban areas needs to be roughly characterized with respect to their form (e.g., mono-centric, poly-centric, road
distributions) and characteristics of the inhabitants (e.g., density, distribution, social characteristics, etc.) so that
they can resemble in a synthetic form. To our knowledge, there is only a handful of studies that partly tackle
creating such synthetic urban areas for a broader scientific community [33, 34].

This is where the procedural city generation (PCG) techniques become useful. Unlike manual data genera-
tion that needs substantial effort, procedural generation is performed by a procedure to automatically generate
content and data. Currently, many existing PCG approaches focus on the game industry and its requirements
[52, 57]. We believe that synthetic urban areas generated through PCG techniques can provide great oppor-
tunities for the scientific community at large and help to advance the state-of-the-art in many disciplines by
providing a standard dataset to test ideas, hypotheses, and theories about urban phenomena. Furthermore, with
an interdisciplinary contribution (especially from the social sciences), the impact can be even greater. In Section
2, we present such application areas that we believe could benefit from such synthetic urban areas. In Section 3,
we survey the current state in PCG and express the gaps in the literature. We conclude by providing some future
research directions in Section 4.

2 Application Areas: From Social Simulation to Urban Testbeds

We identify two broad and related application areas that PCG techniques could make a great impact with re-
gards to studying urban areas. The first and perhaps the most important one is the social simulation. Social
simulation is a modeling paradigm that allows exploring social systems from an individualistic angle (i.e., from
the bottom-up via agent-based models). The second one is urban testbeds, a software technology to conduct
costly experiments in a synthetic environment. Below we describe each of these areas (Sections 2.1 and 2.2
respectively), their inter-relations, and how PCG could impact them.

2.1 Social Simulation

Social simulation, or sometimes called Agent-Based Simulation, is a relatively new modeling paradigm that
allows representing and inquiring social systems from a bottom-up perspective [17]. That is, social system
entities (e.g., humans, firms, organizations) are individually represented by their own decision making logic and
simulated to understand emerging aggregated patterns. Social scientists are increasingly using spatial networks
and other geographical data in their simulations to develop empirically-grounded models [10]. To this end, even
theoretical models (e.g., segregation model of Schelling [50]) have been supported with geographical data to
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elicit new insights into the process of segregation [11]. While this exciting adoption of geospatial technology has
created new opportunities for studying cities and smaller or larger geographies, it comes with several challenges
that need to be addressed.

For instance, geographical data is often crowd-sourced via VGI or collected without following a strict guide-
line. As a result, many open source geographical data are messy with missing/wrong tags etc. as discussed in
Section 1. For instance, the Topologically Integrated Geographic Encoding and Referencing (TIGER) data are
widely used in the SIGSPATIAL community for experiments [47]. But even today, the quality of the data is
in question [62]. Often using such data leaves the (nontechnical) social scientist with exhaustive work of data
cleaning and pre-processing in order to incorporate such geographical data into their social simulation models.
Even worse is the case when the same model is used to study another geographic area which requires the modeler
to make sure that new area data is properly prepared.

The spatial data community could help to address the aforementioned challenges and help advance the state-
of-the-art in social simulations. Especially the main contribution could be creating synthetic urban areas that
would help the social science modeler to generate standardized geographical datasets with plausible character-
istics of cities. For instance, it would be desirable to generate synthetic cities with an arbitrary number diverse
of inhabitants and plausible urban geometry [5] not only for the spatial network (e.g., roads) but also other
environmental pieces like the point of interests, etc.

Having such advanced geospatial data generators would help achieve scientific impact what is way wider
than what the spatial data community often deals with. Social simulation provides a virtual laboratory for
testing existing social theories and create new ones [14]. Synthetic geospatial data, when generated according
to stylized facts [20] about urban areas, could aid theory testing and the creation activities in three main points.
(1) Examining the impact of geography on the robustness of a theory. For instance, how do physical obstacles
affect the spread of ideas or innovation? (2) Facilitating the means for comparing and aligning different theories
(i.e., models) more objectively. Which theory better predicts the spread of ideas or innovation under the same
environmental conditions. (3) Standardizing the structure and naming of geographic and population data thus
saving time and effort.

2.2 Urban Testbeds

We define an urban testbed as a synthetic software system that has the ability to represent and simulate an urban
area in sufficient detail with the goal of providing rigorous and replicable testing platform for various application
areas. Urban testbeds have two main component: the urban environment that is generated using PCG techniques
and the urban population that is created simulated based on the principles of agent-based modeling. Depending
on the test in hand, the abstraction level of the representation of the city and urban population may change. In
the era of smart cities, urban testbeds could play a critical role in future urban developments. Below, we identify
up and coming areas that could benefit from urban testbeds created with PCG techniques.

Self-driving cars and transportation: Self-driving cars have been a long dream not only for car makers
but also drivers [59]. In the last few years, this dream is coming near to reality due to initiatives from technology
companies, start-ups, and car makers that develop and deploy artificial intelligence techniques into self-driving
cars (e.g., Google’s Waymo, Tesla’s Autopilot). Due to unforeseen fatal accidents occurring despite all efforts,
self-driving car technologies need rigorous testing platforms in an isolated, synthetic environment which is a
great application area for urban testbeds. Such a testbed could help such self-driving algorithms adapt and
get validated in different urban settings while at the same time within the safe environment of a computer. In
a more broader perspective, new transportation systems or additions to existing transportation systems (e.g.,
underground, sea, or air) could also be a good case for urban testbeds.

Utility infrastructure and services: Utility services in the urban setting are as critical as, if not more than,
the transportation systems. Urban areas in the world have services including electricity, gas, water, cable, and
garbage collection. Major changes to such services or the impact of natural disasters need rigorous testings
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[38]. Urban testbeds with proper utility service infrastructure implementation could serve as an objective way
of testing such changes [41]. While urban testbeds might not be suitable for real-world testing, for example
changes in a utility service for a specific city, it could potentially fill an important gap when it comes to testing
changes at the conceptual level. For instance, one could test the potential of delivering electricity via cables vs.
wirelessly on an urban testbed which is currently only a futuristic idea and thus exploring general notions of
adoption and coverage needs of such technological innovations.

3 Procedural City Generation

In this section, we review work related to PCG from several perspectives: goals, inputs, outputs and methods.
All procedural city generators (e.g., [12, 21, 23, 24, 25, 45, 53]) are subject to specific goals such as a realistic
scene in a movie or game (e.g., [63]). For this reason, game environment generation or content generation
[12, 21] tends to focus on computer graphics including generating 3D meshes, textures, and animation effects
that look realistic. Due to the physical extent and vertical dimensions (in terms of both the natural and built
environment) of real-world cities, the majority of content may be automatically created by generators; yet,
user interaction is a necessary feature to enhance and refine specific details and to obtain the required level of
detail data needed to meet the goal of the application [25]. Moving from the movie and game industries to
urban planning and analysis, often the goal concerning city generation entails simulations to evaluate potential
renderings of conceived plans such as new city developments [26]. In which case, real-world datasets are likely
to be considered as an input to PCG. To harmonize synthetic datasets with real-world datasets, data formats
for interoperability such as Open Geospatial Consortium (OGC) standards (e.g. CityGML, IndoorGML [27],
Common DataBase (CDB)[49], GeoPackage, etc.) need to be employed [32]. As discussed in Section 2.1, social
simulation needs geographic and population datasets that are plausible whether real-world data is used as input
or not. By plausible, we mean that characteristics of the generated city should fall within the properties of real
cities (e.g., topological characteristics of the road network).

Existing procedural city generators tend to create one or more of the following outputs: geographic environ-
ments (e.g., terrain [6, 52], water bodies [48], and vegetation [13]), urban components (e.g., road networks [7],
traffic signs [56], land uses [34], population [39], and social networks [1]), buildings [8] (e.g., building layout
[42], interiors [57, 58], and furniture arrangement [16]) and textures [35]. Figure 1 shows city generators with
relationships among them, where each solid box represents a generator and each directional edge represents an
input-output relationship between them. Depending on generators, an input/output relationship can be repre-
sented as a bidirectional edge as shown in Figure 1. For instance, spatial networks can be utilized to define city
layouts and vice versa. Because each component has different characteristics, generation techniques used for
each vary.

Generation methods for procedural cities can be categorized as follows: generative grammar, simulation-
based, tensor field, stochastic, data-driven, and inverse procedural generation. Urban components including
natural environments can be described as a fractal and hierarchical structure [4, 6] and such a structure is
often implemented by generative grammars, one of the most popular methods to generate artificial patterns
[53]. Since Lindenmayer [37] first introduced the L-system in biology, many variations including stochastic
L-system [15] and radial L-system [51] have been developed. To overcome some of the limitations (e.g., lack of
multi-dimensionality) of the L-system, other generative grammars such as shape [54], split[64], and generalized
grammars [29] have been developed.

Independently of the grammars above, tensor fields have been developed for PCG which can smooth road
networks along with geographic environments such as terrain and water bodies [9]. Simulation-based generation
employs simulation techniques such as agent-based modeling [33, 34] to generate plausible data. For instance,
iterative generation proposed in [7] simulates road traffic to prescribe expanding road networks to accommodate
more population. Stochastic approaches including Perlin noise [46] are widely used to generate terrain and
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Figure 1: Procedural city generation and input-output relationships

textures. The main idea of data-driven generation is to weave predefined or existing data including templates
[55], patterns (e.g., population-based, radial, raster, mixed) or real examples [44] into unified data. Inverse
procedural generation [65] strives to understand real data in a reverse-engineering manner and take advantage
of other generation techniques such as generative grammar.

In what follows, we discuss about inputs of generation and factors to shape cities. For creators who have
control over generation and interaction with real data, inputs are considered a vital factor. Since urban compo-
nents are deeply relevant each other, real datasets or outputs of one generation become inputs of other component
generators. For example, CityEngine [45] employs a set of statistical and geographical input data. Natural envi-
ronments are most likely to be the first-order influencer to form urban components unless humankind is involved
in reconstructing (e.g., deforesting and reclaiming) nature structures. Population maps are used to control the
size and the shape of urban structures [45, 60]. Historical events are also a candidate of inputs to manipulate
cities over time [28].

From a different perspective, urban scientists have studied various factors of urban structures and city growth
[30, 31]. Such factors can be roughly divided into three [31]: (1) natural environment, (2) human activities,
including movement and occupation of land, (3) the physical productions of transformation, including both
built and planted features. We would also add additional factors to complement these including (a) benefits to
individuals and society, (b) economy, and (c) technologies. Geographic environments such as a river and a forest
can provide benefits that attract population. Location, available natural resources, and climates are also a factor
to determine a type of city: resource city, processing city, market city, and others [22]. Activities and events
shape the city as well [28]. The size and population of the city are affected by those benefits. Also, the economy
has played a role in city growth [2]. Technologies transform shapes of cities in many ways. Especially, road
networks are affected by transportation [18, 61]. Even with the same technology, a paradigm in society can build
a different transportation system such as bicycle sharing and bus rapid transit (BRT).

4 Future Direction

From our review in the previous section, in this section, we address open issues of PCG for a wide range of
users.

• Plausibility: It is an intrinsic requirement of data generators. However, there exist thousands of cities in
our world, each with different shapes. Plausibility does not mean a synthetic city should simply resemble
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one of them, but a plausible procedural generator should allow creators to create a wide variety of intended
cities.

• Diversity vs. controllability: To achieve diversity of data, stochastic elements in the procedural gen-
eration are inevitable. Such randomness enables us to create massive amounts of data with diversity.
However, they have difficulty in controlling their outputs due to randomness. Thus, controllability with
diversity will help advanced users to achieve the results they want. For instance, it would allow users to
opt for various urban features such as spatial network from small scale to large scale, from monocentric
to polycentric, and from organic to planned cities.

• Interoperability: Many different solutions for PCG have been studied. While some of them are stan-
dalone PCG to create most of the content ranging from terrain to buildings [45], many of them focus on
specific features such as terrain, building, and road networks. For one type of features, even different
PCG techniques can be used, e.g., tensor field [9] and L-system[45] for spatial networks. There is no best
solution that fits all. Therefore, a unified solution consisting of different implementations can complement
each other. If they can interface with others through standardized formats as we discussed in Section 3,
we expect integration can be resolved.

• Level of detail: Not every application requires high-quality data (i.e., high level of detail) as seen in
computer games. While some application may want 3D buildings with polygonal roads with high-quality
rendering in a 3D virtual world, some simulations may need just a graph of a road network with 2D
footprints of buildings for simulating commutes to work.

• Ease of use: Since user inputs determine a shape of the city among numerous cases, PCG may require
many parameters and their combination. Most of the users simply want plausible datasets without complex
configurations. A gallery of synthetic cities with predefined parameters will be helpful for users.

• Cost: Cost is one of elements to hinder use of real datasets. Similarly, it will discourage use of procedural
generators if users have to pay the same amount of cost including time and effort. A publicly available
procedural city generator is needed if we are going to advance their use in social simulation and as a
testbed for urban issues (Section 2).

A city is an artifact of numerous interactions between people who currently live or did live in them, cities
are not just created today but are shaped by past decisions and actions of others. An ultimate city generator
should be a simulator taking all the factors that shape and potentially will shape future cities into account so
that it can generate synthetic cities that resemble real cities, even capable of drawing future cities. To make
that happen, several things need to be done. First and foremost, it is required to develop a method to measure
similarity between a synthetic city and a real city. Without adequate measurements, we cannot guarantee outputs
of PCG are plausible. Secondly, across-the-board parameters of PCG that capture characteristics of a city and
all features in it need to be defined (e.g., dimensions [6]). Lastly, modeling technologies that affect society and
form a city is needed. A plug-and-play model would allow users to conduct meaningful experiments (e.g., how
autonomous vehicles or drones can existing transportation networks) but at the same time provide a synthetic
city to bench mark new algorithms or models.
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