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Message from the Editor

Andreas Ziifle
Department of Geography and Geolnformation Science, George Mason University, USA
Email: azufle@gmu.edu

Dear SIGSPATIAL Community,

The newsletter serves the community by publishing short contributions such as SIGSPATIAL conferences’
highlights, calls and announcements for conferences and journals that are of interest to the community, as well
as short technical notes on current topics. This July 2018 continues to feature a special topic of “Urban Analytics
and Mobility”. The choice for this topic follows the rapid trend of the last years: The UrbanGIS’17 workshop
at SIGSPATIAL 2017 was one of the largest workshops, many papers and research sessions focused on related
topics, and the SIGSPATTAL 2017 keynote by Bryan Mistele, Founder & CEO of INRIX, discussed many future
challenges in urban environments.

I want to sincerely thank all authors of for their generous contributions of time and effort that made this issue
possible. I hope that you will find the newsletters interesting and informative and that you will enjoy this issue.

You can download all Special issues from:

http://www.sigspatial.org/sigspatial-special
Yours sincerely,

Andreas Ziifle
SIGSPATIAL Newsletter Editor
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Introduction to this Special Issue:
Urban Analytics and Mobility (Part 2)

Andreas Ziifle
Department of Geography and Geolnformation Science, George Mason University
Email: azufle@gmu.edu

According to a US Census report [2]], the daytime population of cities like Washington D.C. nearly doubles
the nighttime population, coining the notion of “Mega Commuting”. To understand, explain, and predict urban
mobility, our current data-centered era provides a plethora of rich data sources. These data sources capture
mobility on the road, including GPS trajectories, metro, bus and taxi origin-destination data, indoor navigation
data and many more types and sources of data.

These rich data sources present challenges and opportunities to develop new spatial and spatio-temporal
data management systems, as well as novel geographic information systems. Broader impacts of this research
directly affect urban life, such as a reduction of the 11 billion liters of fuel wasted traffic each year in the the
United States [[1]. This special issue of the SIGSPATIAL Special Newsletter contains five articles which present
visions, challenges, and solutions to improve transportation issues in urban environments.

1. Inthe first article, we hit the road: Eftelioglu surveys the challenge and future research directions of finding

“avoidance patterns” using GPS trajectory data. Therefore, the challenge is to automatically identify areas
of a road network that users are avoiding, for reasons such as potholes and crime,

2. the second article takes us indoors: Cheema gives an overview of challenges and opportunities using
indoor location-based services towards making them as ubiquitous as their outdoor counterpart,

3. for the third article, we use peer-to-peer ride-sharing services: Tong and Zhou describe the challenge
of dynamically and efficiently assigning tasks for spatial crowdsourcing platforms, such as ride-sharing
services, to minimize the overhead on the road,

4. for the fourth article, we take the bus: Fei and Gkountouna propose to analyze bus data, including GPS and
odometer readings (distance traveled), to find spatio-tempral patterns of congested areas. These patterns
will be paramount towards future research on more efficient public transportation,

5. In the fifth and final article, we visit alternate worlds: Kim, Kavak and Crook propose urban simulation
as a paradigm to generate, simulate, explain and predict urban population and mobility. They propose the
challenge of creating socially plausibly simulations that capture the complexity of real-world cities, thus
providing unlimited and perfect data of all aforementioned urban mobility data types.

I would like to thank the authors for their contributions, and I hope the readers will enjoy this issue and find it
useful in their research work.

References
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[2] U.S. Census Bureau. U.S. Department of Commerce. Economics and Statistics Administration. Measuring
America: An Overview to Commuting and Related Statistics https://www.census.gov/content/
dam/Census/data/training-workshops/recorded-webinars/commuting-nov2014.pdfl
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Urban Analytics in the Context of Public Safety: The Case
of Avoidance Patterns

Emre Eftelioglu, Cargill Inc., USA

Abstract

Given a collection of geolocated activities, the goal of urban analytics in the context of public safety is
to discover the underlying motives of people that affect their movement/activity patterns in space and
time. Understanding the spatial patterns from urban mobility/activity datasets is an important task in
public safety, city planning and sociology since these may reveal the underlying causes of crimes and
safety issues, as well as behavior changes of individuals. Avoidance patterns are a type of behavioral
change characterized by a lack of movement contrary to expectation. Avoidance pattern detection is a
challenging task due to the lack of observations (e.g. lack of movement), defining the expected “normal”
movement and large datasets (i.e. high number of GPS trajectories which are spread across the study
area and large road network graphs). In addition, these challenges are exacerbated by the complicated
and often hidden drivers of human activities and the complex relationships and dependencies between
the spatially associated features.

In this paper, we will provide a brief overview of the state-of-the-art spatial data science approaches
in the context of avoidance patterns. First, we introduce the background from the domain (i.e. public
safety) perspective, followed by an overview of the current state-of-the-art work. Then we will discuss
possible future directions that may help shape future research on the topic.

1 Introduction and Motivation

With the increasing availability of geolocated data collected from a variety of sources, there is a tremendous
opportunity to understand the movement and activity patterns of people [3]. These patterns are influenced by
many motives which include the underlying demographics, goals (e.g. sightseeing, shopping, work-home com-
mute, etc.), road conditions, etc. One of such patterns is avoidance. Avoidance patterns are the locations where
drivers/pedestrians try to bypass when commuting. These are the result of a variety of driver concerns including
rush hour traffic when there is congestion, road imperfections (e.g. potholes, etc.), safety of a neighborhood as
well as hiding from detection (e.g. criminals’ avoidance behavior).

Avoidance patterns are overlooked compared to other work on urban mobility analytics despite their impor-
tance to understand human behavior. This is due to the ease of focus on the observable phenomena rather than
the lack of phenomena in urban analytics.

One way to define the avoidance pattern is as the area between the shortest path and the taken path by the
driver [7]. Another definition may be the segment of the shortest path that is different than the taken path.
These different definitions of avoidance patterns can be generalized as discovering a region (e.g. polygon, road
segment, etc.) which lacks movement when it is expected.

Figure 1 shows an illustration of an avoidance. Suppose the blue line represents a shortest path between
green-tagged start and end locations; and the red line represents the actual path taken by a driver. Depending on
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Figure 1: An illustration of an avoidance on a road network.

the definition of an avoidance, the output can be the region(s) enclosed by these two paths or a segment of the

shortest (or expected) path that is different than the taken path.

In the following sections, we will provide some example application domains of avoidance pattern discovery

as well as how these may help improve domain officials” work.

1.1 Avoidance Patterns in City Planning and Sociology

“Safety” or “Feeling Safe” is an often overlooked aspect that affects movement and activity patterns.

Feeling unsafe may affect the socialisation and activity patterns of individu-
als [8]. Thus, sociologists and city officials often investigate the neighborhoods
by their demographic structures and take the necessary measures to mitigate the
severity of feeling unsafe and preventing economic loss caused by the stigmati-
zation. For example, some larger cities have distressed neighborhoods that are
known to be riskier. These neighborhoods are not always spoken publicly but
locals often know and avoid them. Such neighborhoods may not have been dan-
gerous or risky before, but these characteristics may emerge gradually. Since, it is
harder to do surveys/sociological analysis frequently, they may be undetected until
itis too late. However, certain occupations are more sensitive to these changes and
this fact can be leveraged instead of relying on the relatively sparse collection of
surveys. One such occupation is taxi driving, where taxi drivers learn these neigh-
borhoods through the experiences of each other and avoid entering them. For
example, in the Chinese city of Kunming, taxi drivers try to not take customers
from the regions where marginalized people are thought to be living [17]. Simi-
larly, as shown in Figure 2, crowdsourced mobile applications such as Waze [1],
allow users to flag some regions as dangerous, and let their users plan their routes
accordingly.

Nowadays, taxis are equipped with GPS devices due to their cheap availability
and legal reasons to prevent conflicts with customers. One may leverage the GPS

Waze App — Avoidance Route

Figure 2: Screenshot of
Waze app [1]

trajectory data collected from those devices [9] to identify the regions where taxi drivers avoid. In addition,
since these datasets are collected in real time, the emergence of avoidance regions will be noticed much quicker
than traditional surveys. Thus, the risk of a neighborhood being stigmatized can be prevented before the word
of “unsafe” is widespread to all residents. City officials may mitigate the negative public opinion by updating

their policies and planning more investments.

1.2 Avoidance Patterns in Law Enforcement

In the previous section, we provided a wide-lens perspective on the use cases of avoidance patterns for law-
abiding citizens. However, sometimes it is not enough to solve the neighborhoods’ sociological problems with-



out getting into the criminal mind. Thus, in this section, we are going to introduce the avoidance patterns from
a criminal mind’s perspective.

A fundamental task in criminology is the analysis of crime locations and locating the criminal to prevent
more crimes [4]. In the past, these analysis were done manually using paper maps and pins, but nowadays
modern law enforcement agencies around the globe use specialized tools and spatial analysis techniques to
automate this process as well as improve their accuracy and efficiency (e.g. CrimeStat [15]).

There is one particular problem with these tools: To successfully use them, multiple crimes should occur
and this will cause a delay in the detection of a criminal behavior as well as cause more harm to society. In
addition, even if a criminals’ location is estimated by these tools, these will neither pinpoint the exact location
of the criminal nor find their mobility behavior causing an extensive search by the security officials in field.

To overcome these issues, the mobility behavior of vehicle trajectories can be analyzed. Criminals often
avoid some locations where there are security cameras or law enforcement checkpoints since these may lead to
their arrest or identification [14]. Thus, given a set of trajectories and security checkpoints/cameras, suspicious
behavior of a trajectory can be identified by its difference from the expected path.

Another preventive measure may be to identify loops in trajectories. These will also cause specific regions
to be flagged as avoidance regions. However, the pattern may not have an intention of avoidance, but a result of
surveillance. For example, criminals may do a surveillance around a target crime site (e.g. a bank for robbery).
Such looping/circling behavior by an individual may be for surveillance. Thus, identifying such trajectories and
the individuals who created them may help public security officials prevent crimes before they occur.

1.3 Avoidance Patterns in Transportation Planning

Transportation planners often deal with multiple data sources including
cameras, road sensors, loop sensors, accident data, etc. to understand
the flow of traffic throughout the day. These datasets are then used
to improve design and synchronization of traffic lights, fix the flawed
road segments, and plan new roads or increase the capacity of existing
ones. One particular need of transportation planners is to understand
the driver behavior under different road conditions [2].

For example, long term residents of cities know where and when
the traffic congestion happens and avoid these locations even though
this may result with a longer route to destination. Similarly, when
there are structural problems (e.g. potholes, cracks, etc.) or there are
construction zones on the road, locals know and avoid these areas. For
example, the magnitude of potholes in Figure 3 may cause drivers’ to
use another road instead of a shorter one. Using the GPS trajectory data
collected from location based applications (e.g. Google Maps, Apple
Maps, Waze, etc.), transportation planners may better understand the Figure 3: Potholes that may cause
driver behavior and the underlying causes. drivers’ avoidance behavior [19]

2 Related Work

There have been several attempts to use mobility datasets (i.e. trajectory datasets) to identify interesting patterns
that can be further analyzed by domain scientists. Mobility datasets (i.e. GPS trajectories) are large sets of points
with ordered timestamps (Figure 5(a)). Due to the imperfection of GPS devices as well as minor variability
caused by driver behavior (e.g. lane changes, speed differences), it is hard to do analysis on these datasets
without any pre-processing.



To overcome such difficulties as well as reduce the computational cost, some studies discretize the space into
grids, and use grid cells to represent trajectories. For example, several works analyze anomalous trajectories to
identify the taxi drivers who were using longer paths for their customers to increase the bill [24, 5]. This is
done by representing the trajectories as grid cells and comparing these sets of cells with the set of cells that
were representing the appropriate route for a source and destination pair. Grid based mobility analysis is used
for other patterns as well. Some example work includes identifying the outlying trajectories by using their grid
cell representations, and clustering these to understand the movement behaviors as well as the transportation
modes [11, 27]. However, the output of these studies are sensitive to the selected grid cell sizes. Selecting a
large grid cell size causes large areas to be flagged as outliers or miss them entirely. Also, selecting a too small
cell size may make the comparison impossible. In addition, since the graph notion of the road network is not
taken into account, the outputs can be unrealistic especially for vehicle trajectories.

Hence, there are other works that use the GPS points of trajectories, instead of their grid cell representations,
to classify trajectories by their transportation modes (e.g. walking, cycling, driving, etc.) [28, 26, 21, 25], to
infer the Points of Interests (POI), and to understand the public transportation behavior, i.e. finding preferred
paths instead of shortest paths [6, 12, 23, 18, 22, 10].

However, the aforementioned approaches lack three important considerations. First, these works consider
GPS trajectories as either a set of points or cells instead of a single trajectory entity. Second, they do not account
for the underlying road network structure. However, most human mobility patterns are dependent on the roads
and those roads affect mobility behavior. Third, they focus on the presence of mobility but sometimes the lack
of movement, when it is expected, may be more interesting.

3 Avoidance Pattern Discovery

Avoidance patterns may be observed in different applications domains. Some avoidance patterns such as aircrafts
avoiding extreme weather events, or a predator species avoiding another’s territory [20] may occur in Euclidean
space but most human activities on land occur on road networks. In addition, the minor perturbations as well as
the driving behaviors (e.g. frequently changing to left, middle or right lanes) can be compensated by the help of
the road network. Given a GPS trajectory with tr = [p; — pa... — p,,] where each point p; = (z;, y;,t;) € tr
and a spatial network graph G = (V, E) where each road intersection is represented by vertices (v € V') and
each street segment is represented by edges (e € E), it is possible to match the trajectories on the road network
to represent them by a collection of nodes and edges [16, 13] as shown in Figure 5(b).

Once trajectories are map-matched, the idea behind the Avoidance Region Discovery [7] is to compare them
with a path which should be used by the normal drivers. Normal behavior can be defined as a shortest path
between the source and destination of the trajectory. Thus, once a trajectory ¢r; and a shortest path sp; are
compared, the edges and the nodes are used to create a set of polygons which represent an avoidance polygon
set for that trajectory. Figure 5(d) shows an example avoidance polygon in red. When the road network graph
is bigger and the trajectory-shortest path differences are in multiple locations, these polygons will create an
avoidance polygon set for that pair.
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Figure 4: Illustration candidate avoidance regions (graph faces). Figure is excerpted from [7].



Avoidance polygons for each trajectory may be in different locations throughout the space (i.e. each tra-
jectory may have different source and destination as well as shortest path). However, to evaluate the regions
which are avoided by more than one trajectory, one will need the provide a consistent set of candidate avoidance
regions. To overcome this issue, the space can be discretized to smaller polygons which are represented by the
faces of a graph. Using Euler’s theorem for planar graphs, the number of candidate avoidance patterns (C'AR)
on road network will be |[CAR| = |E| — |N| + 2.

Using the count of the avoidance (denoted as c) for a region may be misleading. For example, close to a city
center, there may be many candidate avoidance patterns that are avoided due to the higher number of trajectories
intersecting them. However, in a rural area this number will plummet because of the fact that the number of
trajectories in that location will be lower. Therefore, for each candidate avoidance region, the expectation of
non-avoidance count should be known as well. To do this, the number of shortest paths that intersect avoidance
polygons are counted (denoted as nc) and these counts are propagated to the candidate avoidance regions that
are covered by those avoidance polygons.
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Figure 5: An example trajectory (5(a)), its map-matched edge representation(5(b)), corresponding shortest
path(5(c)) and this pair’s avoidance polygon(5(d)) (excerpted from [7]).

Finally, by defining a metric, i.e. interestingness ratio (I = (C fnc) % c¢), which takes both avoidance
and non-avoidance counts into account, is used to compute an interestingness score for each of the candidate
avoidance polygons. The ones which exceed a specified threshold () on this metric are flagged as interesting
avoidance patterns.

This overall process is a challenging task due to the large number of candidate avoidance regions (CAR)
which is related to the size of a road network graph (e.g. 10° edges in a road graph) and the large number of
trajectories that can be collected from GPS devices (e.g. 10° trajectories per year for a large city’s taxis). To
overcome this challenge, [7] proposed an avoidance region miner algorithm that creates a road network sub-
graph that includes the road segments which were used by the trajectories instead of the whole road network
graph. In addition, the authors proposed a pruning algorithm that eliminates the computation of the metric when
it is proved to not exceed the specified threshold. Nevertheless, the proposed algorithm’s pruning methods do
no reduce the worst case complexity.

4 Discussion and Future Directions

The example work on Avoidance Region Discovery in the context of public safety is a starting point but there
are still opportunities for improvement.

Identifying and Comparing with the Non-Shortest Paths: Although shortest paths are a logical choice
for most of the drivers, sometimes non-shortest paths are more convenient due to the travel times, speed limits,
road conditions (many turns vs. straight driving), rush hour, etc. Therefore, one may argue that the shortest path
assumption for a comparison with trajectories may not be valid. In those cases, the preferred paths can be used.

Minor vs. Major Deviations of Trajectories: The current state of the art doesn’t distinguish between
minor and major deviation between shortest paths and trajectories. However, this may be particularly important
depending on the use case. For example, the minor deviations may be used in the public safety domain since



in case of avoiding security cameras/checkpoints the deviations may be minor but when there is a rush hour
congestion the deviation may be greater (e.g. avoiding the city center at rush hour).

Privacy Concerns: One of the key things needed in the context of urban mobility analytics is datasets. Due
to the privacy concerns, this is not usually possible unless Volunteered Geographic Information (VGI) sources
are used. However, since the people with suspicious behavior may not be willing to share their locations, it is
hard to collect these. In addition, tagging each trajectory with the driving individual’s ID may violate privacy
rights because these will point to the source and destination, consequently the locations where people live. Thus,
some of the capabilities of the avoidance pattern discovery may be limited such as distinguishing between the
population and individual avoidance behaviors.

Statistical Significance: In [7], the avoidance and non-avoidance counts were used but the interestingness
ratio metric does not provide a statistical significance value for the output. Thus, spurious/chance patterns may
exist in the output. One approach may be to understand the distribution of trajectories over the study area and
using this distribution in to provide meaninful significance values for the output.

Emerging Avoidance Regions: One of the most interesting applications of avoidance region discovery is
the detection of emerging such regions. For example, a structural damage to a road segment may occur over
time by the traffic and/or weather conditions. Thus, the temporal information related to the trajectory datasets
can be used to find some long term (e.g. structural damage) and short term (e.g. accidents causing congestion)
emerging avoidance regions.
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Indoor location-based services: Challenges and
Opportunities

Muhammad Aamir Cheema
Faculty of Information Technology, Monash University, Australia
aamir.cheema@monash.edu

Abstract

Billions of smartphone users throughout the world have come to expect, and rely upon, intuitive, reliable
and accurate maps, directions, turn-by-turn navigation and other location-based services (LBSs). Those
same users will over the next few years come to expect and then demand the same experience and services
when they enter any large building or facility in the world whether that be a hospital, airport, shopping
mall or university campus. Based on various reports and surveys, it is reported that indoor LBSs are
expected to have an even bigger impact than outdoor LBSs mainly because indoor is where we spend our
time and money, meet friends, and where business happens. Indoor LBSs have numerous applications
including navigation, location based social networking, emergency services, location-based marketing,
mobile games, asset tracking, and workforce location. In this paper, we describe the challenges that
need to be solved in order to make indoor LBSs as ubiquitous as their outdoor counterpart and discuss
the opportunity this provides.

1 Introduction

Location-based services (LBSs) are the services that take into account geographical locations of users and other
entities. Some applications of LBSs include car navigation systems, emergency services, travel planning, asset
management, location-based recommendation, and geosocial networking. LBSs have become ubiquitous be-
cause of the surge in adoption of smartphones and the availability of cheap wireless networks. The Australian
Communication and Media Authority (ACMA) reported [1] that 72% of Australians accessing the internet via
their mobile phone use a LBS at least once a week. ACMA concluded that: “Location services exhibit their
potential in countless situations, which generally fall within the government, business, and consumer domains.
The uses encompass emergency management and government applications, business solutions and consumer
applications’.

Although we spend more than 85% of our time indoors (30% at indoor venues other than homes, often in
unfamiliar places [29]), nearly all of the existing LBSs focus on outdoor space and ignore indoor space alto-
gether. The indoor LBSs promise huge potential for research organisations, government agencies, technology
giants, and enterprising start-ups — to adapt to the indoor applications such emergency services, assisted health-
care systems, indoor asset tracking, and event planning. For example, indoor LBSs can be used to help visually
impaired people navigate indoor venues, directing people to safe exits during emergency evacuations, tracking
staff, patients and equipment in hospitals [2] and providing location-based shopping assistance for customers.

Realising the potential of indoor LBSs, major technology companies, government and research organiza-
tions and start-ups are investing heavily in indoor technology. For example, the US Federal Communications
Commission is exploring indoor positioning for more timely and effective emergency services [3]. In October
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2014, Apple allowed [4] businesses to use its indoor location capabilities — but the service was soon completely
overwhelmed by pent-up demand, forcing Apple to limit it to venues with over 1 million visitors a year. Based
on such reports of its immense popularity, Forbes reported that indoor venues are the next frontier for LBSs [5]
and indoor LBSs are expected to have an even bigger impact than their outdoor counterpart [14].

Despite the huge need of indoor LBSs, they are still not widely available due to some major challenges that
hinder its ubiquitous availability. In the next section, we present the details of two such major challenges. Then,
in Section 3, we present some important research directions that address the two challenges and pave the way
for ubiquitous indoor LBSs. We remark that this paper does not aim to provide a comprehensive list of important
research directions in this area. Although some of these research directions have already received some research
attention [35, 39, 31, 27], we believe that these research areas demand significant more work from the research
community. The goal of this paper is to highlight the importance of indoor LBSs and to provide some of the
important research directions, thus encouraging research in these areas.

2 Challenges

In this paper, we discuss two major challenges that need to be addressed before the indoor LBSs become as
ubiquitous as outdoor LBSs: 1) there does not exist any ubiquitous indoor positioning technology to identify a
user’s location; 2) in order to provide indoor location-based services at a global-scale, efficient and effective data
management and analytics techniques are required to handle indoor venues and indoor data. Below, we provide
the details.

2.1 Ubiquitous Indoor Positioning System (IPS)

Global positioning system (GPS) is a ubiquitous technology that identifies the location of a user carrying a GPS-
enabled device such as a smartphone. Unfortunately, GPS does not work in indoors and we are still far from
a ubiquitous technology for indoor environments. Some indoor positioning technologies require installation of
special hardware (e.g., RFID readers, bluetooth beacons) in the indoor venue that makes them infeasible for
global deployment. WiFi based positioning technologies [18, 30] provide a better option due to the ubiquitous
availability of WiFi in indoor venues. However, most existing technologies require fingerprinting — manually
mapping signal strengths at different indoor locations — which is time consuming and labor intensive. This is a
major hurdle in the worldwide deployment of such a technology also because fingerprinting is sensitive to indoor
environments and becomes invalid with time due to the changes in indoor environment. Some systems have been
proposed to reduce the fingerprinting overhead of WiFi-based localization systems. However, these systems
depend on installing special hardware to monitor changes in the signal strength [30], crowd-sourcing [34] which
requires active feedback from users, and/or theoretical modelling tools that rely on detailed information of the
indoor venues such as material of walls and doors etc. [22, 28]. Due to the manual efforts involved, none
of these approaches is suitable for a ubiquitous indoor positioning system that can locate indoor users in any
WiFi-enabled building with minimum overhead.

2.2 Indoor Data Management and Analytics

Another largely unmet challenge is how to effectively manage and analyze indoor location data. Current indoor
indexing and query processing technology is in its infancy and falls short in managing different types of indoor
data critical for a variety of location-based services. Some limitations of the existing techniques are: 1) rich
textual information associated with indoor locations is not utilized; 2) uncertainty in the data is not adequately
handled, leading to poor or incorrect results; 3) indoor trajectory data, which can be very useful in providing
insights, have not been exploited; and 4) outdoor space is not integrated with indoor space, ruling out a large
class of applications that involve both outdoor and indoor space.
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Outdoor techniques [15] cannot address the above limitations due to the specific characteristics of indoor
settings. For example, we need to not only represent the spaces (airport, hospital) in proper data model but
also manage all the indoor features (lifts, escalators, stairs) and locations of interest (boarding gates, exit doors,
counters) such that search can be conducted efficiently. Indoor spaces are characterized by indoor entities such
as walls, doors, rooms, hallways, etc. Such entities constrain as well as enable indoor movements, resulting
in unique indoor topologies. Therefore, outdoor techniques cannot be directly applied to indoor venues. One
possible approach for indoor data management is to first model the indoor space to a graph using existing indoor
data modelling techniques [26] and then applying existing graph algorithms to process queries on the indoor
graph. However, this approach is inefficient because the techniques fail to exploit the properties specific to
indoor space. For example, it was recently shown [36] that the state-of-the-art outdoor algorithm [41] takes
over one second to answer a single shortest distance query between two indoor points in the Clayton campus
of Monash University. A world-scale indoor service provider using the outdoor techniques would have a low
throughput and would be unable to meet the high query workload, e.g., Google Maps is adding indoor venues
and may provide spatial queries involving indoor spaces in the near future. The query workload is expected to
be quite high and the existing techniques would not be able to meet the demand. In contrast, the techniques
that exploit the properties specific to indoor space [36] can answer a shortest distance query in around 0.01
milliseconds on the same dataset, a 10° times improvement. To support a large number of indoor queries in real
time, there is a need to develop techniques for indoor location data that address the limitations mentioned above
and carefully exploit the properties specific to indoor venues to provide efficient query processing capabilities.

3 Research Directions and Opportunities

Indoor LBSs exhibit their potential in countless situations, which generally fall within the government, business
and consumer domains. The uses encompass emergency management and government applications, business
solutions and consumer applications. Below, we briefly describe some representative applications of indoor
LBSs in each of the three domains:

e Government. Indoor LBSs are critical in areas such as public safety, emergency services, and healthcare. The
U.S. Federal Communications Commission has a strong interest in improving emergency services using in-
door positioning technology [3]. LBSs are also used in hospitals for indoor navigation, tracking staff and
patients, location-based messaging, asset management, location analytics, and in integrating with other clini-
cal systems. The global LBS market in the healthcare sector was predicted [2] to grow at a compound annual
growth rate (CAGR) of 31.23% from 2015 to 2019.

o [ndividuals. Indoor LBSs have many applications for individuals such as navigation, in-store guidance, guided
tours, and location-based social networking. For example, Google reported [6] that 84% of the smartphone
shoppers use their mobile to help shop while in-store and 1 in 3 shoppers use their smartphones to find
information instead of asking store employees. Indoor LBSs will also benefit visually impaired people and
autonomous machines such as robots. Analyst firm ABI research estimated that, by 2018, over 800 million
mobile devices will be using indoor LBSs [7].

e Businesses. Commercial applications of Indoor LBSs include location-based marketing, asset management,
and workforce allocation. Indoor location- and place-based marketing is expected to surpass 10 billion dollars
by 2018 [8]. Also, Forbes stated that the location-based services are a bonanza for start-ups due to their
immense popularity and low entry barrier [9].

Realising the potential of indoor location-based services, major companies and research organizations have
started investing heavily in this area. For example, Google offers more than 10,000 indoor maps of U.S. and
international facilities in Google Maps [10], Microsoft and Nokia have partnered to provide indoor services on
more than 3,000 facilities including U.S. airports and convention centers, and Apple acquired WiFiSLAM, a
company providing indoor positioning services [11]. Huge demand of indoor LBSs and increasing availability
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of indoor maps have created a huge opportunity for research and development in indoor LBSs. In this section,
we briefly describe several important and promising research directions and opportunities.

3.1 Developing a Ubiquitous Indoor Positioning System

There is a large body of work on indoor positioning systems (e.g., see [17, 32, 38]). However, almost all existing
techniques either require installation of special hardware or require extensive manual calibration that makes
them infeasible for global deployment. Although the accuracy of these positioning systems has improved a
lot in the past few years, such indoor positioning systems are still far from being as ubiquitous as GPS is for
outdoor spaces. This is a major hindrance in the deployment of indoor LBSs at a global scale. Thus, there is
a need to develop an indoor positioning system that relies on the ubiquitous availability of existing equipment
(e.g., WiFi access points or light sources) and does not rely on manual calibration (e.g., fingerprinting). Some
recent research [23] have started working towards addressing this need. However, such efforts must be continued
and more work is needed before the vision of global deployment of such systems is realized.

3.2 Indexing and Querying Textual Indoor Location Data

In the present Web 2.0 era, spatial data are increasingly annotated, whether manually or algorithmically. This
results in a rich body of information associated with objects. For instance, products in a supermarket may be
tagged with price, ingredients, nutritional information and use-by date. Similarly, medical instruments in a
hospital are tagged with textual information such as name, category and department.

Despite the popularity of keyword search, the current indoor query processing systems only deal with the
spatial dimension of the data and cannot support keyword search on spatial data (called spatial keyword search).
In a spatial keyword query, the objects are returned not only based on their distances from the query location but
also based on their keyword similarity to the query keywords. A user may issue a query with the keyword string
“low fat milk” to find nearby shops that sell low fat milk. Or a library user may want to navigate to the location
of a book, and use its title as keywords. Existing systems that answer spatial keyword queries in outdoor space
rely on specialized indexes [19] (e.g., IR-tree, KR*-tree, S2I etc.) that are only applicable for outdoor venues.
They do not extend efficiently to ontologies that are typical of indoor domains.

There is a need to develop efficient indexing and query processing techniques for spatial keyword queries
that allow to search for indoor objects based not only on their distances from the query location, but also on
how well they match query terms. For example, a user may issue a query to find the nearest defibrillator in
an emergency situation. Queries may be ambiguous (when several objects match a query), inaccurate (when
there are no objects that match all the requested attributes, e.g., “a cheap food place nearby”); and if spoken,
some words may be mis-heard by an Automatic Speech Recognizer. In addition, the data may be dynamic, e.g.,
locations or terms associated with objects may change, medical instruments may be moved, the user may be
walking, or the price of a product may change.

3.3 Handling Uncertainty in Indoor Location Data

Real-world data are noisy, and location-based data are even more so [16]. Reasons include built-in inaccuracy
of the positioning technology (for GPS, IPS, etc.), transmission delay, and deliberately added noise to protect
privacy [21]. This is worsened by the fact that data are increasingly user-created, or automatically annotated
by spatial data-mining algorithms [37]. More and more queries are sent from mobile devices with misspelt or
otherwise defective keywords. There could be serious consequences of ignoring such uncertainties in data. No-
toriously, there are news reports on how errors in Google Maps have led to unwanted traffic, wrong destinations
or itineraries [12], and even international conflicts [13].
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Location inaccuracy in indoor space is even more of a concern. A minor discrepancy in reported location
may render results worse than useless. A location error of just a metre or two in Euclidean distance may indicate
a different room, or even the wrong floor, and a wildly incorrect estimate of indoor walking distance that could
be catastrophic in an emergency.

A fundamental challenge is to model the uncertainties for different types of data, and to design efficient
techniques for answering probabilistic queries regarding uncertain indoor data, such as probabilistic k£ nearest
neighbors and probabilistic range queries. In general, uncertainty significantly increases the complexity of query
processing, e.g.,the complexity of evaluating conjunctive queries over uncertain data is #P-complete [20]. When
uncertainty is considered together with the characteristics of indoor settings, the queries are even harder to
process.

3.4 Indoor Trajectory Management and Analytics

Just as a user’s web browsing history (e.g.,clickstream) in an online world provides insights about the user,
a user’s trajectory gives insights about him/her in the physical world [33]. For example, the trajectories of
indoor users may be used to learn how people flow through an indoor venue. These insights may be valuable
for users, government agencies and venue owners, and scenarios such as optimizing the layout of a venue,
planning emergency evacuations, flow analysis, and congestion prediction. Due to the different topology (indoor
vs outdoor space), different positioning systems used (GPS vs IPS) and different user behaviours (driving vs
walking), indoor trajectories have different characteristics from outdoor trajectories [27]. Thus, there is a need
to develop new indexing, retrieval and analytics techniques to exploit the potential of the indoor trajectories.

3.5 Integrating Outdoor and Indoor Space

Almost all existing query processing techniques are designed either for outdoor space or for indoor space.
However, a lot of real-world applications encompass both — for example, navigation from a multi-level car park
to an office on a university campus. Hence, it is important to seamlessly integrate outdoor and indoor space
(OI-space, together) and propose a unified indexing scheme to support a wide range of applications in OI-space
that are not supported by the current systems. This is non-trivial mainly due to the inherent differences between
outdoor and indoor space.

Concern for integrating indoor and outdoor space (Ol-space) has prompted research in the past few years.
This includes seamless positioning handover between indoor and outdoor [25], data models for OI-space [24],
and ontologies for Ol-space [40]. However, there is no work on a unified index to allow efficient processing
of spatial queries in Ol-space. Thus, there is a need to effectively and seamlessly integrate outdoor and indoor
space in a unifying index, to support efficient and scalable processing of queries in Ol-space. Given inherent dif-
ferences between the ontologies appropriate to indoor and outdoor space, the techniques and indexing schemes
designed for one do not work well for the other.

4 Conclusions

We spend a large part of our lives in indoor environment. However, almost all existing location-based services
(LBSs) focus on outdoor spaces. To meet the growing demand and popularity of indoor LBSs, several challenges
must be addressed that hinder the ubiquitous availability of indoor LBSs. In this paper, we first present an
overview of two major challenges and then provide some important and promising research directions that
will support and enhance a wide range of indoor applications, such as emergency services, assisted healthcare
systems, indoor asset tracking and event planning, thereby improving the stakeholders’ experience.
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Abstract

Spatial crowdsourcing is a crowdsourcing paradigm featured with spatiotemporal information of tasks
and workers. It has been widely adopted in mobile computing applications and urban services such as
citizen sensing, P2P ride-sharing and Online-To-Offline services. One fundamental and unique issue in
spatial crowdsourcing is dynamic task assignment (DTA), where tasks and workers appear dynamically
and need to be assigned under spatiotemporal constraints. In this paper, we aim to provide a brief
overview on the basics and frontiers of DTA research. We define the generic DTA problem and introduce
the evaluation metrics to its solutions. Then we review mainstream solutions to the DTA problem. Finally
we point out open questions and opportunities in DTA research.

1 Introduction

Crowdsourcing is a computing paradigm where humans actively participate in the procedure of computing,
especially for the tasks that are intrinsically easier for humans than for computers. There has been active research
on crowdsourcing [3} [11} [16} 22} 23] using web-based crowdsourcing platforms such as Amazon Mechanical
Turks (AMT) and oDesk. The development of mobile Internet and sharing economy has triggered the shift from
web-based crowdsourcing to spatial crowdsourcing (a.k.a mobile crowdsourcing) [4], where (i) each worker
is considered as a mobile computing unit to complete tasks using their mobile devices [18] and (ii) spatial
information such as location, mobility and the associated contexts plays a crucial role. Applications of spatial
crowdsourcing have deeply penetrated into everyday life. Some of the most representative applications include
real-time taxi-calling services (e.g., Uber and DiDi), product placement checking services in supermarkets (e.g.,
Gigwalk and TaskRabbit) on-wheel meal-ordering services (e.g., GrubHub and Instacart), and citizen sensing
services (e.g., Waze and OpenStreetMap).

As with web-based crowdsourcing, a central issue in spatial crowdsourcing is task assignment, which aims
to assign tasks to suitable workers such that the total weighted value of the assigned pairs of tasks and workers
is maximized or the total moving distance of the workers is minimized [[13} 26} 25, 28} 119, 27,29, 30]. Different
from task assignment in web-based crowdsourcing, the unique spatiotemporal dynamics in spatial crowdsourc-
ing calls for new designs in task assignment theories and methods. Particularly, the tasks and works in spatial
crowdsourcing may appear dynamically and task assignment needs to be performed immediately or in a short
period, a.k.a. dynamic task assignment (DTA).

The DTA problem is challenging because (i) assignments are made under incomplete information; (ii) as-
signments usually cannot be revoked; and (iii) assignments need to be performed computationally efficient to
meet the real-time requirements on large datasets. We formulate the generic DTA problem in Sec. [2]and review
representative solutions to the DTA problem in Sec. 3] We finally point out open questions and opportunities for
future research on DTA in Sec. ]
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2 Dynamic Task Assignment Problem

2.1 Problem Statement

For a spatial crowdsourcing platform (“platform” for short), the generic dynamic task assignment problem can
be formulated based on the following definitions.

Definition 1 (Task): A task, denoted by ¢t =< 1y, ay, d;, ¢; >, at the location I; in the 2D space is posted on the
platform at time a; and is either allocated to a worker who arrives on the platform before the response deadline
d; or cannot be allocated thereafter. No more than ¢; worker are required to perform the task.

Definition 2 (Worker): A worker, denoted by w =< 1, @y, dy, ¢,y >, arrives at the platform with an initial
location [, in the 2D space at time a,, and either performs a task which arrives at the platform before its response
deadline d,, or does not conduct any task. Once a worker finishes a task, s/he can be viewed as a new worker if
s/he is willing to be assigned other tasks. A worker is able to perform c,, tasks at most.

Definition 3 (Constraint Function): A constraint function f.(¢,w) is used to indicate whether ¢ can be as-
signed to w. Generally speaking, the constraint function is related to some spatiotemporal requirements, such as
whether ¢ is in the service range of w, or whether w can arrive at the position of ¢ before its deadline.

Definition 4 (Utility Function): A utility function f, (¢, w) is used to measure the utility of assigning ¢ to w. It
can be the payoff of the task or the payoff times the probability that ¢ can be finished successfully.

Definition 5 (Distance Function): A moving cost function fy(t,w) is used to measure the cost of w if s/he
moves to the location of ¢ to perform the task. In practice the distance function can be the Euclidean distance or
road network distance between ¢ and w.

Definition 6 (DTA Problem): Assume a set of tasks 7', a set of workers W, a constraint function f.(-,-), a util-
ity function f,(+,-) and a distance function fy(-,) on a spatial crowdsourcing platform. Suppose initially there
is no task or worker on the platform. Workers and tasks then arrive dynamically at any time. The DTA problem
is to find an assignment M among the tasks and the workers for different objectives, which can be either maxi-
mizing the total utility U' = >, )¢ s fu(t, w) or minimizing the total moving cost C' = -, e ps fa(t, w) of
the assignment pairs, such that the following constraints are satisfied:

e Spatiotemporal constraint: V(¢,w) € M, f.(t,w) = 1, which means that ¢ can be assigned to w.

e Invariable constraint: once a task ¢ is assigned to a worker w, the allocation of (¢, w) cannot be changed.

As opposed to static task assignment, where the spatiotemporal information of all the workers and tasks is
known, the DTA problem needs to make an effective assignment with partial information about the workers and
tasks. We illustrate the DTA problem for maximizing the total utility using the following example.

Example 1: Suppose we have five tasks ¢1-t5 and three workers wi-ws on a spatial crowdsourcing platform,
whose initial locations are shown in a 2D space in Fig. |1l Each worker has a spatial restricted activity range,
indicating that the worker can only conduct tasks that locate within the range, which is shown as a dotted circle
in Fig. |1} Each user also has a capacity (i.e., ¢,,), which is the maximum number of tasks that can be assigned to
him/her. In this example, the capacity of each worker is 2 and the capacity of each task is 1. Fig. 2] presents the
utility values for each pair of task and worker, which is marked on the edge between the worker and the task. In
the static scenario, the total utility of the optimal task assignment is 10 (marked in red in Fig. [2). However, in
the dynamic scenario, the offline solutions are not always applicable since both the workers and the tasks arrive
dynamically at the platform. This is the main challenge for dynamic task assignment.
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Figure 1: An instance of dynamic task assignment. Figure 2: The utility between workers and tasks.

2.2 Evaluation Metric for DTA Algorithms

The solutions to the DTA problem are usually online algorithms [2].Different from traditional approximation al-
gorithms for which approximation ratios are utilized to measure the approximation quality, for online algorithms,
competitive ratios (CR) are used to evaluate their performance. In particular, the competitive ratio measures how
good an online algorithm is compared with the optimal result of the offline model where all the information is
provided. Based on different assumptions on the arrival order of the tasks and workers, typical online models
include the adversarial model, random order model and i.i.d model. Take the goal of maximizing total utility as
examples. The corresponding competitive ratios of the three types of online models are defined as follows.

Definition 7 (CR in the Adversarial Model [17]): The competitive ratio in the the adversarial model of a spe-
cific online algorithm for the DTA problem is the following minimum ratio between the result of the online
algorithm and the optimal result over all possible arrival orders of the tasks and the workers,

Performance of M
and VveV Performance of OPT

where G(T,W,U) is an arbitrary input of tasks, workers and their utilities, V' is the set of all possible input
orders, and v is one order in V.

ey

CRa = minygT,wu)

Definition 8 (CR in the Random Order Model [17]): The competitive ratio in the the random order model of
a specific online algorithm for the DTA problem is the following ratio,

E[Performance of M]
Performance of OPT

where G(T, W, U) is an arbitrary input of tasks, workers and their utilities, %w is the expectation of

the ratio of the total utility produced by the online algorithm and the optimal total utility of the offline scenario
over all possible arrival orders.

2

CRRro = minyg(r,w,u)

Definition 9 (CR in the i.i.d Model [10]): The competitive ratio in the i.i.d model of a specific online algorithm
for the DTA problem is the minimum ratio of the result of the online algorithm over the optimal result under all
possible arrival orders generated by the spatiotemporal distributions of the tasks and the workers Dz and Dy,

Performance of M
and VveV follows D and Dyy Performance of O PT

where G(T',W,U) is an arbitrary input of tasks, workers and their utilities, V' is the set of all possible input
orders of tasks and the workers, and v is one order in V.

CR;.i.qa = minygr,w,u)
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3 Dynamic Task Assignment Algorithms

Solutions to the dynamic task assignment problem roughly fall into two modes: batch mode and real-time mode.
Batch mode periodically processes a set of workers and tasks that arrive within a specific time interval. Real-
time mode makes an assignment immediately when a worker or a task appears on the platform. Both modes are
able to handle dynamically arrived workers and tasks. However, only the real-time mode is suited for stringent
real-time requirement, i.e., tasks should be assigned immediately upon arrival.

3.1 Batch Mode

The basic idea of the batch mode is to periodically make an assignment in the static scenario, i.e., both workers
and tasks have already appeared on the platform. All the existing solutions in the batch mode [13} 14} 21} 20} 6]
aim to maximize the total utility. According to the methods to conduct the static assignment, the batch mode
can be further categorized as maxmimum flow based methods [13} 114} 21]] and greedy based methods [20} |6].

dest

Figure 3: The procedure of reducing DTA to the maximum flow problem.

Maximum Flow Based Methods. Kazemi er al. [[13] are the first to use a batch mode solution to the DTA
problem in spatial crowdsourcing. Since they aim to maximize the number of performed tasks (i.e., the utility
between each worker and task is 1), the basic idea is to reduce the instance of DTA into an instance of maximum
flow problem. Fig. [3|illustrates the procedure of the reduction. First, the capacity of the edge (src, w;) is ¢y,
because each worker can only perform c,,, tasks at most. Second, since workers can only perform tasks that
are in their regions (e.g., wy can only perform ¢1), the vertex mapped from w; can transfer flow to only some
of the vertices mapped from those tasks (e.g., the edge between w; and ;). The capacity of the edge between
workers and tasks is 1 because a worker would not repeatedly perform the same task. Last, the capacity of the
edge (t;,dest) is ¢ ; because a task can only have at most ¢;; assigned workers. By reducing to the maximum
flow problem, any algorithm that computes the maximum flow in the network can be used to solve the instance,
e.g., Ford-Fulkerson algorithm [[15]. Finally, the assignment between workers and tasks can be induced through
the flow and capacity between w; and ¢; in the instance of maximum flow problem. Consequently, to solve the
DTA problem we repeat this step for every batch.

Multiple heuristics techniques have been proposed to optimize solutions in the batch mode. Hient et al. [21]]
introduce a Least Location Entropy Priority (LLEP) strategy to seek a global optimal by considering future
coming workers. They use entropy of a location to measure the total number of workers in that location as well
as the relative proportion of their future visits to that location. A higher priority is given to tasks located in areas
with smaller location entropy, because those tasks have a lower chance of being completed by other workers. A
Nearest Neighbor Priority (NNP) Strategy is also proposed to minimize the total travel distance of workers.

Greedy Based Methods. Greedy is a straightforward batch mode solution to the DTA problem. Hien et al. [20]
propose to always select the worker who has the maximum number of unperformed tasks. Cheng et al. [6]
design a greedy strategy to always select the pair of worker and task with the maximum utility. The benefit of
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the greedy methods is that they are usually efficient and a few techniques can help improve the effectiveness of
the methods. Some successful optimization techniques include prediction the arrivals of tasks and workers [6],
divide-and-conquer [6]], etc.

Summary. A comprehensive experimental comparison among batch-based solutions can be found in [3].
LLEP [21] is more effective but less efficient due to the time complexity of maximum flow problem and
NNP [21] is more efficient. Note that assignment algorithms in the batch mode are online algorithms and it
is possible to analyze their theoretical guarantees under partial information, i.e., competitive ratio. However, all
the methods in the batch mode [13, 14} 21} 20, 6] can only guarantee their effectiveness within a batch but there
is no guarantee on the global performance. It remains open whether the batch mode is competitive under the
adversarial model, random order model and i.i.d model.

3.2 Real-time Mode

Solutions in the real-time mode to the DTA problem decide the assignment once a worker or a task appears on the
platform and are thus more challenging than those in the batch mode. Existing solutions in the real-time mode
vary in objective goals. Popular optimization objectives include minimizing the total travel distance between
workers and tasks [[12, (1, [1°7, 25] such that the average waiting time of tasks (e.g., passengers in taxi dispatching
services [31]]) is minimized, and maximizing the total utility between workers and tasks [26 (19, 28 [7, [8]].

Minimizing the Total Distance. Greedy [12] can be a naive method to immunize the total distance. It matches
each new arrival request to its currently nearest unmatched worker. The competitive ratio of Greedy is O(2" —1)
under adversarial model [12]]. In [[12], the authors also propose another method, called Permutation, to further
improve the competitive ratio to O(2n—1). The basic idea of Permutation is to make an assignment for each task
according to the result of the offline minimum weighted matching (e.g., Hungarian algorithm). Since a determin-
istic method may easily obtain a worse competitive ratio under the adversarial model, other researchers [[1} [17]]
utilize the Hierarchically Separated Tree (HST) [9] to design a randomized algorithm such that a log-scale
competitive ratio can be obtained. Specifically, they first embed the metric space into an HST. Then, they use
HST-Greedy [[17] and HST-Reassignment [[]] to achieve the ratio of O(log®n) and O(log? n). However, these
studies [12, 1] mainly focus on analyzing the worst-case competitive ratios of the proposed online algorithms,
while [25]] studies the performance of these algorithms in practice (i.e., Random Order Model). Particularly,
they observe a surprising result that the simple and efficient greedy algorithm, which has been considered as the
worst due to its exponential worst-case competitive ratio, is significantly more effective than other algorithms.
They further show that the competitive ratio of the worst case of the Greedy algorithm is actually a constant of
3.195 in the average-case analysis.

Maximizing the Total Utility. In order to maximize the total utility between workers and tasks, Tong et al. [26]]
propose a Hungarian-based method called TGOA with competitive ratio 1/4 under random order model. They
also propose a greedy-based method called TGOA-Greedy with competitive ratio 1/8 under the same model.
Both [26] and [19] propose a threshold-based method to maximize the utility in bipartite matching [26] and
trichromatic matching [[19]. A threshold of utility is sampled beforehand and the method arbitrarily choose an
assignment only if the utility between the worker and the task is above the threshold. In practice, prediction is
also used to improve the effectiveness and efficiency of the real-time methods (28, 24, (7, 8].

Summary. A comprehensive experimental comparison among solutions in the real-time mode which minimize
the total distance can be found in [25]. From large-scale evaluations, a surprising result is observed that the
simple greedy algorithm may be still competitive in the random order model, which is more practical than the
adversarial model. Nevertheless, comprehensive evaluations among solutions in the real-time mode in the goal
of maximizing the total utility are still missing.

We summarize existing solutions in the real-time mode in Table [I] Constant competitive ratio is usually
achievable under the random order model and the i.i.d model. The competitive ratio under i.i.d model is usually
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Table 1: Comparisons of existing real-time solutions to the dynamic task assignment problem.

Objective Method Analysis Model | Competitive Ratio
Greedy [12] Adversarial o@2"—-1)
Permutation [12] Adversarial O(2n—1)

Minimize Distance | HST-Greedy [[17] Adversarial O(log® n)
HST-Reassignment [1]] | Adversarial O(log®n)
Greedy [23]] Random order 3.195 in worst case
TGOA [26]] Random Order | 0.25
TGOA-Greedy [26] Random Order | 0.125

.. . Basic-Threshold [19] Random Order | 1/(3eln(Upee + 1

Maximize Utility 5573 R"6p 128 iid 0./4(7 ( X
ADAP [7] i.i.d 0.5 —¢
NADAP [8]] iid 0.295

higher, because prediction is usually helpful to improve the effectiveness of method in practice [28, [7, 8]

4 Conclusion

In this article, we formulate the generic Dynamic Task Assignment (DTA) problem for spatial crowdsourcing
and briefly review the state-of-the-art solutions to the DTA problem. As an emerging research topic, DTA is far
from mature. We list some of the open questions below. One interesting open problem is whether Greedy can
achieve constant competitive ratio under the random order model for the DTA problem when minimizing total
distance [25]. Another open issue is whether existing spatial indexes, which support moving object queries, can
be extended to support the online data processing in spatial crowdsourcing. Finally, well-defined benchmarks to
test and compare different spatial crowdsourcing data processing techniques are still missing. We envision this
paper to not only raise awareness of DTA in the database community but also invite the database researchers to
advance this promising area.
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Abstract

Public buses are an important part of the urban transportation mix. However, a considerable disad-
vantage of buses is their slow speed, which is in part due to frequent stops, but also due to the lack of
segregation from other vehicles in traffic. As such, assessing bus routes and the respective sections that
are prone to congestion is an important aspect of route planning, scheduling, and the creation of dedi-
cated bus lanes. In this work we use bus tracking data from the Washington Metropolitan Area Transit
Authority, to discover speed patterns of specific bus routes in relation to the road network throughout
the day. Specifically, we focus on using these patterns to identify free flow segments, bus stop locations,
traffic light locations and road segments prone to congestion.

1 Introduction

Buses, like other forms of public transportation, provide an essential service to users that depend on this service
to commute to and from work, and to other places. Such services are especially important in large cities, where
increasing vehicular traffic flows continues to a be a major challenge for urban planners, who must content with
associated road congestion in cities. However, buses face several challenges, one of which is having notoriously
slow speeds (as low as 17mph for some bus routes in DC), thus resulting in longer commute times for passengers.
Besides frequent stops, which are prescribed for this means of transportation, the speed is also impacted by the
lack of segregation from other vehicular traffic. As such, the assessment of traffic conditions along bus routes
forms an integral part of route planning, scheduling, and the creation of dedicated bus lanes in cities.

In our study, we discretize a bus route and calculate the average speed using odometer and time stamp
values to discover patterns of slowdowns throughout a 24-hour period. This slowdown pattern may be persistent
throughout the day, random, or may appear at specific times of the day. Each of these cases are due to different
causes. Random slowdowns throughout the day are indicative of traffic lights. More persistent slowdowns are
indicative of bus stops, while time-dependent slowdowns are more likely related to traffic congestion. From a
public transportation planning perspective, route segments prone to traffic congestion would be prime candidates
for dedicated bus lanes.

We performed our analysis on real (Metrobus) data from WMATA [20], the public transport authority of the
Washington DC area. We cluster all road segments along a bus route, using features derived from the bus speeds
at each segment, and sampled at hourly intervals. Our results reveal different categories of road segments which
can be associated with free-flow of traffic, and different types of slow-downs.

The remainder of this paper is structured as follows. Section 2 presents a brief survey of the related work on
bus data. Section 3 includes an overview of the main challenges we faced in working with this type of data. In
Section 4, we present our method, experimental setup and an evaluation of our Washington D.C. Metrobus case
study. Finally, Section 5 concludes the paper.
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2 Related Work

Bus data has received considerable attention for the estimation of traffic conditions. Floating car data (FCD) or
probe vehicle data (PVD) refers to the use of data generated by one vehicle as a sample to assess to overall traffic
conditions (cork swimming in the river). PVD from automobiles have previously been studied to estimate travel
times and traffic conditions [15, 10, 2, 18, 22, 21] and traffic speed [9]. Specifically, as it relates to bus data,
the focus of our work, a number of works [12, 16, 17, 3, 1] have used this data to study travel times and related
traffic flows in urban areas. It was shown in [3] that the difference between travel times of a bus and that of an
car was relatively stable, and that buses with automated vehicle locators (AVL) can be used as a probes to collect
travel time data at regular intervals with minimum cost. AVL bus data is used for characterizing the performance
of arterial roads in Oregon [1]. [12] examine real-time sensitivity between buses and cars to study the feasibility
of a real bus probe application in an urban traffic environment. [17] predicted travel times under heterogeneous
traffic conditions by applying a Kalman filtering technique to GPS data collected from buses.Further, [16] use
bus probe data to evaluate the travel time variability and the level of service of roads. Kumar et al. [8] developed
a bus arrival time prediction system, considering both spatial and temporal variations of travel times. In [7] a
simulation technique was used to study the influence of these stops on traffic flow under heterogeneous traffic
conditions.

The location optimization of bus stops has also been the focus of several works. Saka [14] developed a model
for determining optimum bus-stop spacing in urban areas, with the aim of decreasing travel time, headway, and
the fleet size. Chien et al. [5] focus on optimizing bus routes in areas with a commuter (many-to-one) travel
pattern. [4] address the problem of optimizing the placement of bus stop locations, with the goal to improve
the accessibility of a bus service. [13] used a GIS-based methodology to identify hazardous bus stop locations
prone to auto-pedestrian collisions. [6] developed a spatial interaction coverage model for identifying bus stop
redundancy in order to optimize transit planning. A work more relevant to ours [11] proposes a methodology to
de-noise GPS AVL data, identify bus stops, and detect time schedule information.

While [11] clusters all the bus recordings along a route to form groups, with each group corresponding to
one stop, our approach aims to discover the different categories of segments within the bus route. Ideally, all
stops should appear in one cluster, the traffic lights in another, etc.

3 Challenges

While most existing approaches are based on GPS data, in our study we use odometer readings recorded using
a bus AVL system. The data comprises of bus trips for different routes collected during a 24-hour period. Each
trip consists of a time series of odometer readings from a specific bus, with sampling interval varying from 1 to
10 seconds.

3.1 Rate of recordings

The rate at which the location and time stamp information were recorded is not constant. It varies for different
buses, as well as for the same bus over time. The time delay between any two consecutive measurements varies
from one to several seconds. To overcome this inconsistency, we discretized time into constant time intervals,
and calculated the average bus speed over those specific periods.

3.2 Odometer alignment

Even though they are more reliable than GPS, still the odometer readings between any two different bus trips
are not perfectly aligned. Specifically, two buses that follow the same path may be at different locations after
1,000 odometer-measured feet. One reason for this misalignment is the choice of lane, especially when turning
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Figure 1: Bus trips of X2 route.

the bus. A bus that goes around the outer lane to turn will record a longer odometer distance compared to a bus
that has used the inner lane in the same direction of traffic flow. Another reason is that the pressure of the tires
may contribute to recording more feet over the same distance travelled. This misalignment creates a problem
wherein when we divide the odometer space into segments of 200ft, these segments are not the same for every
bus trip. Consequently, this makes the locations of bus stops appear differently for every bus. To address these
issues, we plan to align the bus routes as part of our future work, using a special indication of bus stop locations.
Whenever a bus enters or exits a geo-fence around a bus stop, it is recorded in the data. These recordings should
include all bus stops, regardless of whether the bus actually opened its doors or not.

3.3 Bus stop location identification

We want to know the bus stop locations in the odometer space, i.e., how far each stop is from the beginning of
the route. This forms an important part of this research; we aim to identify what segments of the route have
traffic patterns indicating the existence of a bus stop, as opposed to slow traffic due to congestion, or traffic
lights. The dataset contains indications of an ”Open door”” whenever passengers board or disembark the vehicle,
and which happens almost exclusively at bus stop locations. Combining these indications from all the bus trips
is not a trivial task as the odometers of different bus routes are not aligned. Using the geo-fence based indication
mentioned in challenge 3.2 can solve this misalignment. However, this method includes all bus stop locations,
even if no buses ever stop there (for example a very unpopular bus stop, or an old bus stop that is no longer in
use). To identify valid bus stops as our ground truth, we consider a road segment as containing a bus stop only
if more than a minimum number of buses per day open their doors at that location.

4 Case Study: Washington D.C. Metrobus

The main bus service in the Washington D.C. metropolitan area, Metrobus, provides more than 400,000 trips
each weekday, and serves 11,500 bus stops in the District of Columbia, Maryland, and Virginia respectively.
Metrobus has more than 1,500 buses operating on 325 routes, and is the sixth busiest bus agency in the United
States [20]. Over the last two decades, there has been gradual decrease in the ridership of Metrobus, particular
due to increased congestion, and which has resulted in significant lose of revenue [19]. This makes the specific
study area and bus service of particular interest in the study of traffic flow dynamics. The sections that follow
provide an overview of our findings from an analysis of real data acquired from the Metrobus service.
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Figure 2: Relationship between travel time, average speed and odometer readings of all the buses.

4.1 Data

We used bus trips from the X2 route of the Washington D.C. metropolitan area shown in Figure 1. Our dataset
contained 489 trips from 10/04/2016. During data cleaning, we removed any bus trips that significantly deviated
from the examined route. This resulted in a dataset containing 58 trips travelling on one direction. We understand
the limitation of performing analysis on such a small dataset, and for only a 24 hour period. Future work will
undertake a more in-depth analysis, using a larger collection of trips that are acquired for a much longer time
period.

4.2 Preprocessing

We discretized the bus route into 200ft segments. This segment length was considered neither too small to
be noisy, nor large enough so that several bus stops and/or traffic lights would be contained within any single
segment. The odometer readings (i.e., distance covered) versus the time from the beginning of the trip are shown
in Figure 2(a), for all the buses in our data collection.

Using the above routes, we estimated the average speed of every bus, for each 200ft road segment. These
results are visualized in Figure 2(b). The blue dots at the bottom of this figure correspond to indications of a bus
door opening. These indications are used in our evaluation as ground truth for where bus stops are located. To
avoid false indications (e.g. when the bus driver opens a door for an emergency passenger request), we consider
a road segment having a bus stop only if at least five buses have opened their doors at that segment.

4.3 Clustering Segments

We use the aforementioned bus speeds to derive a set of features for clustering road segments along the bus
route. Our first approach uses the percentage of slow buses calculated over hourly time buckets. Given a speed
threshold 7, we consider a bus as “slow” if it moves at a speed v < 7. For our experiments, we set the value of
7 to be 10km/h. Our second approach uses the average speed of all buses calculated for each road segment for
each hourly time bucket. Using these approaches, we generate a set of 24 features per road segment. Principal
component analysis was then used to reduce our feature space to 4 principal components, following which these
latent features were fed to a k-means clustering algorithm. A k value of 4 was used since we expect to discover
4 types of road segments.

Intuitively, we expect bus stop locations to be those where almost all buses would stop. On the other hand,
traffic lights should cause some buses to stop at a red light, while others would pass with a green light, regardless
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Figure 3: Clustering results.

of time of the day. Congestion should affect specific road segments at specific times of the day (e.g. rush hours).
This would be a periodic phenomenon, and it would be very interesting to examine this aspect as part of future
research. Finally, in free flow segments, buses should have relatively high values of speed throughout the day.
These segments are identified as those having between 0 and 20 slow buses for at least 20 out of the 24 hour
buckets of the day. The remaining segments are labelled as other congestion or traffic lights. The results of our
two approaches are presented in the following section.

4.4 Experimental Results

A visualization of our results is presented in Figure 3. Each row corresponds to a 200ft road segment along the
X2 bus route. Columns labels 1 through 24 are the hourly buckets, and correspond to the 24 derived features.
For Figure 3(a), these features are the fraction of slow buses, colored in a scale from green to red, with red
depicting a high number of slow buses, while green depicts few or no slow buses. In the case of Figure 3(b), the
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Table 1: Summary of Results for the Fraction of Slow Buses Approach.

Cluster Label 0 1 2 3 | Total
Bus stop 51 16| 15| 16 52
Other congestion or traffic light | 14 | 11 1 4 30
Free flow 55 0 0 0 55
Total 741 27| 16| 20| 137

Table 2: Summary of Results for the Average Bus Speed Approach.

Cluster Label 0 1 2 3 | Total
Bus stop 0| 24| 27 1 52
Other congestion or traffic light 0 51 14| 11 30
Free flow 20 0 41 31 55
Total 20 29| 45| 43| 137

features are the average hourly bus speeds for each segment. In this Figure, green shows high speeds, yellow
and orange show moderate speeds, while red depicts low bus speeds. The buses start from an origin outside the
city, where there is typically less traffic, and travel towards a destination in the center, which is more prone to
congestion. This explains why there are many more green cells towards the top (origin) and more red cells at the
bottom (destination). The 25th column contains the locations of bus stops depicted as black cells. White cells
correspond to road segments that do not include bus stops. The final column shows the derived cluster label of
each segment. For clarity, in both Figures 3(a) and 3(b) cluster ‘0’ is colored green, ‘1’ is blue, ‘2’ is red, and ‘3’
is purple. Note however that the numbering of the cluster labels is random. Clusters of the same number in the
two figures do not necessarily correspond to each other. In the following we evaluate the quality of our findings.

4.4.1 Using the Fraction of Slow Buses.

The results of our cluster analysis are shown in Table 1. Cluster label 0 includes all the road segments of free-
flow. Cluster 1 appears to be more related to congestion as in several of its segments there contain slow buses at
certain hours, where there are no bus stops. We note that most road segments of cluster 1 are located towards the
city center, compared to most free-flow segments (label 0) that are located outside the city center, and thus less
prone to congestion. Most members of cluster 2 correspond to bus stops. However, all the bus stops are almost
evenly distributed among labels 1, 2 and 3. In particular, 15 out of 16 road segments of cluster 2 contain bus
stops (Precision=0.94), while 15 out of the 52 bus stops in total were labeled as cluster 2 (Recall=0.29). What
remains to be tested is which road segments correspond to traffic lights, for which no data was available in this
study. This data could be aligned with collected odometer readings to verify if one or more clusters correspond
to these locations.

4.4.2 Using the Average Bus Speed.

Table 2 shows the results of using the average bus speed in our analysis. The members of cluster O correspond
only to road segments of free-flow, where the average bus speed is high throughout the day. These segments are
mainly located outside the city center, with no bus stops. Compared to the use of the percentage of slow buses,
several free-flow segments are now placed in cluster 3. Those segments are closer to the city center, but are not
bus stop or traffic light locations. Thus they are able to maintain high average speeds throughout the day.

Most bus stops are distributed between only two clusters, 1 and 2. While the majority of them (28 of 53) are
in cluster 2, the purity of bus stop locations in cluster 1 is larger, with a precision of 0.83, compared to 0.60 for
bust stops in cluster 2. The members of cluster 1 have low average speeds throughout the day, implying frequent
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bus stops. On the other hand, the members of cluster 2 have lower speeds at certain hours of the day, which
indicates that they are also prone to traffic, or that the corresponding bus stops are more popular at certain hours
of the day. This explains why cluster 2 contains 31% of “other congestion” segments. Cluster 3 almost never
coincides with a bus stop and contains road segments with moderate, but not low, average speeds.

5 Conclusions

This analysis is a small step in the direction of spatiotemporal analysis of latent traffic patterns. We explored a
data-driven approach to assess the traffic characteristics of road segments using public transportation data. In
particular, we use data mining techniques to identify latent speed patterns in bus traffic related flows: traffic-
light related delays, bus stop related delays, or free-flow. The lack of sufficient data is an obvious limitation
of our analysis. More data are needed in order to assess the validity of our approach, but we believe that our
preliminary results show a very promising direction of research.
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Abstract

The common trend in the scientific inquiry of urban areas and their populations is to use real-
world geographic and population data to understand, explain, and predict urban phenomena. We argue
that this trend limits our understanding of urban areas as dealing with arbitrarily collected geographic
data requires technical expertise to process;, moreover, population data is often aggregated, sparsified,
or anonymized for privacy reasons. We believe synthetic urban areas generated via procedural city
generation, which is a technique mostly used in the gaming area, could help improve the state-of-the-art
in many disciplines which study urban areas. In this paper, we describe a selection of research areas
that could benefit from such synthetic urban data and show that the current research in procedurally
generated cities needs to address specific issues (e.g., plausibility) to sufficiently capture real-world
cities and thus take such data beyond gaming.

1 Introduction

Urban areas are complex systems composed of densely-situated populations which are mobile and interact with
each other. It is the structure (i.e., form) and function (i.e., how people use areas) of urban areas that impact
how people use, extend, and manipulate such environments. Many disciplines such as geography, data science,
and the social sciences more generally study urban areas and its populations. The intention of these disciplines
is often to understand, explain, and predict various urban phenomena ranging from gentrification [3] to traffic
jams [36]. A common approach followed by these disciplines is to inquire about a specific scientific question,
capture or obtain empirical data related to the question, and use or create a data-driven model that advances
the current body of knowledge.

Such empirical data can be placed into one of two groups: geographic data and population data. Here
we refer to geographic data to include maps of administrative areas, land use, location footprints, point-of-
interests, various levels of road networks, and satellite images. Geographic data is often publicly available
(especially in developing and developed countries). While population data includes socioeconomic data such as
census information (i.e., general population characteristics) and mobility data in the form of check-ins, travel
diaries, public transportation information, and traffic sensors to name but a few. However, unlike geographic
data, population data is often at times restricted and aggregated as it contains sensitive information of people or
sometimes not available at all (as is the case in less developed countries [40]).

Although both geographic and population data are frequently used in research, their use poses several chal-
lenges. The recent emergence of volunteered geographic information (VGI, [19]) makes large-scale geographic
data possible via initiatives like OpenStreetMap; but due to its relaxed contribution rules, such spatial network
data is flexible but has no guarantee of correctness. Moreover, vandalism is one of the latent challenges VGI
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is facing [43]. Common problems in terms of quality include missing/wrong tags (i.e., misclassification of
features), digitizing error (e.g., overshoot/undershoot), topologically inconsistent data (e.g., spaghetti model)
and so on. These require costly post-processing (e.g., cleaning data) when being utilized for analyzing urban
areas. While tools for and mechanism of quality assurance and quality control (QA/QC) have been developed
to improve quality of real datasets, they require technical expertise in data processing which is often lacking in
many fields exploring urban areas. Population data pertaining to individuals’ movement is mostly aggregated,
sparsified, or anonymized to preserve the privacy of individuals. Many nontechnical scientists face one or more
of these challenges when using data in each urban area they focus.

We would argue that, while focusing on single urban areas is a necessity for specific applications (e.g.,
for urban planning), in other instances it might be more desirable to work on standardized synthetic urban
areas should they have sufficient details for the question at hand. For instance, the self-driving car technology
aims to improve the safety of the real-world roads and reduce fatal accidents; it is quite possible to test self-
driving algorithms and their safety on an entirely synthetic simulated urban area that resembles the real-world
urban areas. Moreover, this standardized synthetic urban area could be used to benchmark different algorithms
by different companies in the self-driving marketplace. For such a synthetic dataset to be created and used,
urban areas needs to be roughly characterized with respect to their form (e.g., mono-centric, poly-centric, road
distributions) and characteristics of the inhabitants (e.g., density, distribution, social characteristics, etc.) so that
they can resemble in a synthetic form. To our knowledge, there is only a handful of studies that partly tackle
creating such synthetic urban areas for a broader scientific community [33, 34].

This is where the procedural city generation (PCG) techniques become useful. Unlike manual data genera-
tion that needs substantial effort, procedural generation is performed by a procedure to automatically generate
content and data. Currently, many existing PCG approaches focus on the game industry and its requirements
[52, 57]. We believe that synthetic urban areas generated through PCG techniques can provide great oppor-
tunities for the scientific community at large and help to advance the state-of-the-art in many disciplines by
providing a standard dataset to test ideas, hypotheses, and theories about urban phenomena. Furthermore, with
an interdisciplinary contribution (especially from the social sciences), the impact can be even greater. In Section
2, we present such application areas that we believe could benefit from such synthetic urban areas. In Section 3,
we survey the current state in PCG and express the gaps in the literature. We conclude by providing some future
research directions in Section 4.

2 Application Areas: From Social Simulation to Urban Testbeds

We identify two broad and related application areas that PCG techniques could make a great impact with re-
gards to studying urban areas. The first and perhaps the most important one is the social simulation. Social
simulation is a modeling paradigm that allows exploring social systems from an individualistic angle (i.e., from
the bottom-up via agent-based models). The second one is urban testbeds, a software technology to conduct
costly experiments in a synthetic environment. Below we describe each of these areas (Sections 2.1 and 2.2
respectively), their inter-relations, and how PCG could impact them.

2.1 Social Simulation

Social simulation, or sometimes called Agent-Based Simulation, is a relatively new modeling paradigm that
allows representing and inquiring social systems from a bottom-up perspective [17]. That is, social system
entities (e.g., humans, firms, organizations) are individually represented by their own decision making logic and
simulated to understand emerging aggregated patterns. Social scientists are increasingly using spatial networks
and other geographical data in their simulations to develop empirically-grounded models [10]. To this end, even
theoretical models (e.g., segregation model of Schelling [50]) have been supported with geographical data to
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elicit new insights into the process of segregation [11]. While this exciting adoption of geospatial technology has
created new opportunities for studying cities and smaller or larger geographies, it comes with several challenges
that need to be addressed.

For instance, geographical data is often crowd-sourced via VGI or collected without following a strict guide-
line. As a result, many open source geographical data are messy with missing/wrong tags etc. as discussed in
Section 1. For instance, the Topologically Integrated Geographic Encoding and Referencing (TIGER) data are
widely used in the SIGSPATIAL community for experiments [47]. But even today, the quality of the data is
in question [62]. Often using such data leaves the (nontechnical) social scientist with exhaustive work of data
cleaning and pre-processing in order to incorporate such geographical data into their social simulation models.
Even worse is the case when the same model is used to study another geographic area which requires the modeler
to make sure that new area data is properly prepared.

The spatial data community could help to address the aforementioned challenges and help advance the state-
of-the-art in social simulations. Especially the main contribution could be creating synthetic urban areas that
would help the social science modeler to generate standardized geographical datasets with plausible character-
istics of cities. For instance, it would be desirable to generate synthetic cities with an arbitrary number diverse
of inhabitants and plausible urban geometry [5] not only for the spatial network (e.g., roads) but also other
environmental pieces like the point of interests, etc.

Having such advanced geospatial data generators would help achieve scientific impact what is way wider
than what the spatial data community often deals with. Social simulation provides a virtual laboratory for
testing existing social theories and create new ones [14]. Synthetic geospatial data, when generated according
to stylized facts [20] about urban areas, could aid theory testing and the creation activities in three main points.
(1) Examining the impact of geography on the robustness of a theory. For instance, how do physical obstacles
affect the spread of ideas or innovation? (2) Facilitating the means for comparing and aligning different theories
(i.e., models) more objectively. Which theory better predicts the spread of ideas or innovation under the same
environmental conditions. (3) Standardizing the structure and naming of geographic and population data thus
saving time and effort.

2.2 Urban Testbeds

We define an urban testbed as a synthetic software system that has the ability to represent and simulate an urban
area in sufficient detail with the goal of providing rigorous and replicable testing platform for various application
areas. Urban testbeds have two main component: the urban environment that is generated using PCG techniques
and the urban population that is created simulated based on the principles of agent-based modeling. Depending
on the test in hand, the abstraction level of the representation of the city and urban population may change. In
the era of smart cities, urban testbeds could play a critical role in future urban developments. Below, we identify
up and coming areas that could benefit from urban testbeds created with PCG techniques.

Self-driving cars and transportation: Self-driving cars have been a long dream not only for car makers
but also drivers [59]. In the last few years, this dream is coming near to reality due to initiatives from technology
companies, start-ups, and car makers that develop and deploy artificial intelligence techniques into self-driving
cars (e.g., Google’s Waymo, Tesla’s Autopilot). Due to unforeseen fatal accidents occurring despite all efforts,
self-driving car technologies need rigorous testing platforms in an isolated, synthetic environment which is a
great application area for urban testbeds. Such a testbed could help such self-driving algorithms adapt and
get validated in different urban settings while at the same time within the safe environment of a computer. In
a more broader perspective, new transportation systems or additions to existing transportation systems (e.g.,
underground, sea, or air) could also be a good case for urban testbeds.

Utility infrastructure and services: Utility services in the urban setting are as critical as, if not more than,
the transportation systems. Urban areas in the world have services including electricity, gas, water, cable, and
garbage collection. Major changes to such services or the impact of natural disasters need rigorous testings
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[38]. Urban testbeds with proper utility service infrastructure implementation could serve as an objective way
of testing such changes [41]. While urban testbeds might not be suitable for real-world testing, for example
changes in a utility service for a specific city, it could potentially fill an important gap when it comes to testing
changes at the conceptual level. For instance, one could test the potential of delivering electricity via cables vs.
wirelessly on an urban testbed which is currently only a futuristic idea and thus exploring general notions of
adoption and coverage needs of such technological innovations.

3 Procedural City Generation

In this section, we review work related to PCG from several perspectives: goals, inputs, outputs and methods.
All procedural city generators (e.g., [12, 21, 23, 24, 25, 45, 53]) are subject to specific goals such as a realistic
scene in a movie or game (e.g., [63]). For this reason, game environment generation or content generation
[12, 21] tends to focus on computer graphics including generating 3D meshes, textures, and animation effects
that look realistic. Due to the physical extent and vertical dimensions (in terms of both the natural and built
environment) of real-world cities, the majority of content may be automatically created by generators; yet,
user interaction is a necessary feature to enhance and refine specific details and to obtain the required level of
detail data needed to meet the goal of the application [25]. Moving from the movie and game industries to
urban planning and analysis, often the goal concerning city generation entails simulations to evaluate potential
renderings of conceived plans such as new city developments [26]. In which case, real-world datasets are likely
to be considered as an input to PCG. To harmonize synthetic datasets with real-world datasets, data formats
for interoperability such as Open Geospatial Consortium (OGC) standards (e.g. CityGML, IndoorGML [27],
Common DataBase (CDB)[49], GeoPackage, etc.) need to be employed [32]. As discussed in Section 2.1, social
simulation needs geographic and population datasets that are plausible whether real-world data is used as input
or not. By plausible, we mean that characteristics of the generated city should fall within the properties of real
cities (e.g., topological characteristics of the road network).

Existing procedural city generators tend to create one or more of the following outputs: geographic environ-
ments (e.g., terrain [6, 52], water bodies [48], and vegetation [13]), urban components (e.g., road networks [7],
traffic signs [56], land uses [34], population [39], and social networks [1]), buildings [8] (e.g., building layout
[42], interiors [57, 58], and furniture arrangement [16]) and textures [35]. Figure 1 shows city generators with
relationships among them, where each solid box represents a generator and each directional edge represents an
input-output relationship between them. Depending on generators, an input/output relationship can be repre-
sented as a bidirectional edge as shown in Figure 1. For instance, spatial networks can be utilized to define city
layouts and vice versa. Because each component has different characteristics, generation techniques used for
each vary.

Generation methods for procedural cities can be categorized as follows: generative grammar, simulation-
based, tensor field, stochastic, data-driven, and inverse procedural generation. Urban components including
natural environments can be described as a fractal and hierarchical structure [4, 6] and such a structure is
often implemented by generative grammars, one of the most popular methods to generate artificial patterns
[53]. Since Lindenmayer [37] first introduced the L-system in biology, many variations including stochastic
L-system [15] and radial L-system [51] have been developed. To overcome some of the limitations (e.g., lack of
multi-dimensionality) of the L-system, other generative grammars such as shape [54], split[64], and generalized
grammars [29] have been developed.

Independently of the grammars above, tensor fields have been developed for PCG which can smooth road
networks along with geographic environments such as terrain and water bodies [9]. Simulation-based generation
employs simulation techniques such as agent-based modeling [33, 34] to generate plausible data. For instance,
iterative generation proposed in [7] simulates road traffic to prescribe expanding road networks to accommodate
more population. Stochastic approaches including Perlin noise [46] are widely used to generate terrain and
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textures. The main idea of data-driven generation is to weave predefined or existing data including templates
[55], patterns (e.g., population-based, radial, raster, mixed) or real examples [44] into unified data. Inverse
procedural generation [65] strives to understand real data in a reverse-engineering manner and take advantage
of other generation techniques such as generative grammar.

In what follows, we discuss about inputs of generation and factors to shape cities. For creators who have
control over generation and interaction with real data, inputs are considered a vital factor. Since urban compo-
nents are deeply relevant each other, real datasets or outputs of one generation become inputs of other component
generators. For example, CityEngine [45] employs a set of statistical and geographical input data. Natural envi-
ronments are most likely to be the first-order influencer to form urban components unless humankind is involved
in reconstructing (e.g., deforesting and reclaiming) nature structures. Population maps are used to control the
size and the shape of urban structures [45, 60]. Historical events are also a candidate of inputs to manipulate
cities over time [28].

From a different perspective, urban scientists have studied various factors of urban structures and city growth
[30, 31]. Such factors can be roughly divided into three [31]: (1) natural environment, (2) human activities,
including movement and occupation of land, (3) the physical productions of transformation, including both
built and planted features. We would also add additional factors to complement these including (a) benefits to
individuals and society, (b) economy, and (c) technologies. Geographic environments such as a river and a forest
can provide benefits that attract population. Location, available natural resources, and climates are also a factor
to determine a type of city: resource city, processing city, market city, and others [22]. Activities and events
shape the city as well [28]. The size and population of the city are affected by those benefits. Also, the economy
has played a role in city growth [2]. Technologies transform shapes of cities in many ways. Especially, road
networks are affected by transportation [18, 61]. Even with the same technology, a paradigm in society can build
a different transportation system such as bicycle sharing and bus rapid transit (BRT).

4 Future Direction

From our review in the previous section, in this section, we address open issues of PCG for a wide range of
users.

e Plausibility: It is an intrinsic requirement of data generators. However, there exist thousands of cities in
our world, each with different shapes. Plausibility does not mean a synthetic city should simply resemble
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one of them, but a plausible procedural generator should allow creators to create a wide variety of intended
cities.

o Diversity vs. controllability: To achieve diversity of data, stochastic elements in the procedural gen-
eration are inevitable. Such randomness enables us to create massive amounts of data with diversity.
However, they have difficulty in controlling their outputs due to randomness. Thus, controllability with
diversity will help advanced users to achieve the results they want. For instance, it would allow users to
opt for various urban features such as spatial network from small scale to large scale, from monocentric
to polycentric, and from organic to planned cities.

o Interoperability: Many different solutions for PCG have been studied. While some of them are stan-
dalone PCG to create most of the content ranging from terrain to buildings [45], many of them focus on
specific features such as terrain, building, and road networks. For one type of features, even different
PCG techniques can be used, e.g., tensor field [9] and L-system[45] for spatial networks. There is no best
solution that fits all. Therefore, a unified solution consisting of different implementations can complement
each other. If they can interface with others through standardized formats as we discussed in Section 3,
we expect integration can be resolved.

e Level of detail: Not every application requires high-quality data (i.e., high level of detail) as seen in
computer games. While some application may want 3D buildings with polygonal roads with high-quality
rendering in a 3D virtual world, some simulations may need just a graph of a road network with 2D
footprints of buildings for simulating commutes to work.

e Ease of use: Since user inputs determine a shape of the city among numerous cases, PCG may require
many parameters and their combination. Most of the users simply want plausible datasets without complex
configurations. A gallery of synthetic cities with predefined parameters will be helpful for users.

e Cost: Cost is one of elements to hinder use of real datasets. Similarly, it will discourage use of procedural
generators if users have to pay the same amount of cost including time and effort. A publicly available
procedural city generator is needed if we are going to advance their use in social simulation and as a
testbed for urban issues (Section 2).

A city is an artifact of numerous interactions between people who currently live or did live in them, cities
are not just created today but are shaped by past decisions and actions of others. An ultimate city generator
should be a simulator taking all the factors that shape and potentially will shape future cities into account so
that it can generate synthetic cities that resemble real cities, even capable of drawing future cities. To make
that happen, several things need to be done. First and foremost, it is required to develop a method to measure
similarity between a synthetic city and a real city. Without adequate measurements, we cannot guarantee outputs
of PCG are plausible. Secondly, across-the-board parameters of PCG that capture characteristics of a city and
all features in it need to be defined (e.g., dimensions [6]). Lastly, modeling technologies that affect society and
form a city is needed. A plug-and-play model would allow users to conduct meaningful experiments (e.g., how
autonomous vehicles or drones can existing transportation networks) but at the same time provide a synthetic
city to bench mark new algorithms or models.
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