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Abstract

Prompt surveillance and forecasting of COVID-19 spread are of critical importance for slow-
ing down the pandemic and for the success of any public mitigation efforts. However, as with any
infectious disease with rapid transmission and high virulence, lack of COVID-19 observations
for near-real-time forecasting is still the key challenge obstructing operational disease predic-
tion and control. In this context, we can follow the two approaches to forecasting COVID-19
dynamics: based on mechanistic models and based on machine learning. Mechanistic models
are better in capturing an epidemiological curve, using a low amount of data, and describing
the overall trajectory of the disease dynamics, hence, providing long-term insights into where
the disease might go. Machine learning, in turn, can provide more precise data-driven forecasts
especially in the short-term horizons, while suffering from limited interpretability and usually
requiring backlog history on the infectious disease. We propose a unified reinforcement learning
framework that combines the two approaches. That is, long-term trajectory forecasts are used in
machine learning techniques to forecast local variability which is not captured by the mechanistic
model.

1 Introduction

Spatio-temporal forecasts of infectious diseases rapidly move to the forefront of policy and public health
response because of their key role in risk mitigation strategies. During the COVID-19 pandemic, this
has become especially important in areas with high demographic, economic, and political variability.
For example, in North Carolina decisions on opening and closing businesses because of COVID-19 are
made at the state, county, and local levels. When Wake County leadership announced the lifting of
some restrictions, the town of Apex issued an order to continue keeping the strongest restrictions.
Similarly, areas that are either remote or used for seasonal vacations (e.g., mountain or beach counties)
might exhibit different disease dynamics than those produced by the rest of the state. Because of high
spatial heterogeneity, COVID-19 forecasting is important at the local level. Local outbreaks could
overwhelm public health systems, hospitals, and emergency rooms.

Hence, to facilitate hospital preparedness, it is critically important to forecast hospital capacity and
probabilities that capacity could be overtaken by emerging patients. This relies on two interconnecting
models: one predicts how many people are likely to become infected in each of the areas and another
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describes how infected individuals move to and between appropriate health care centers. This second
model provides the eventual answer to health officials, while the first model stays in the background
until needed. To provide the solution at the local level we use an explicit synthetic population, a
database that represents the entire population of U.S. residents (over 300 million synthetic individuals).
For each of the synthesized individuals (agents), this database contains demographic characteristics
and geographic location (Figure 1). More details and a working viewer are available at http://

synthpopviewer.rti.org/ and elsewhere [3, 13]. Multiple layers can be added to the database to
make it relevant to a specific question. The COVID-19 layers could include school and work assignment,
hospital and emergency department, etc.

Figure 1: Snapshot of the synthetic population for Wilmington, NC.

For the purpose of forecasting hospital load in North Carolina, a team of Response to Intervention
(RTI) researchers developed a spatially explicit agent-based model (ABM) that forecasts to which
hospital sick patients are likely to move and where they might be transferred if the hospital is over
capacity or doesn’t have the proper equipment. This model was developed for North Carolina and
considers a synthetic population, where synthesized agents represent over 10 million North Carolina
residents. The model also uses 110 short-term acute care hospitals (STACHs), 421 nursing homes,
and 10 long-term acute care hospitals (LTACHs). At each day timestep, individual health status and
location are updated. Figure 2 shows a map with marked locations of health care providers.

The other model provides a forecast of how many individuals are going to be infected and how
many will be sick to the point of going to the hospital in the future. Such a model can have different
levels of granularity. One level is a county-level system dynamics model that assumes homogeneous
mixing (each individual has the same chance to meet any other individual), which leads to the mass
action principle, where the risk of infection is proportional to the prevalence of infectious individuals
and the proportion of susceptible individuals. Under these assumptions, individuals are equally likely
to get infected and thus randomly spread infection through the population. More sophisticated models
can include age and social structure (some people have more and closer contacts than others) and
geographic locations and allow for disease transmission to occur in clusters.
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Figure 2: Locations of health care providers

ABM approaches have been widely used in a large number of areas including health care, epidemi-
ology, economics and finance, and social sciences. Epidemiology of infectious diseases is one of the
most natural areas to apply it. For example, an ABM was developed to forecast pandemic flu in North
Carolina and New York, where the model explicitly described the household structure and people’s
movements and activities through the day including going to work and school, being in a household,
or in community spaces and transportation [4, 5]. These models allowed us to identify the areas at the
highest risk and estimate the contribution of these areas to the epidemic. For example, for New York,
it was shown that public transportation (including subways) contributed less than 10% to disease inci-
dence, while households and schools provided the majority of new cases and thus acted as transmission
clusters [10]. Recently we considered synthetic populations to describe seasonal influenza in Russia [8].
The study had an additional challenge of estimating background susceptibility.

The length of the forecasting time horizon is critical for preparedness, but it is also challenging. The
longer the time horizon, the higher the uncertainty, especially when policy and environment change
in unpredictable ways. Nevertheless, one could foresee at least some impacts such as weekends, major
holidays, and scheduled public announcements such as on business and school closures and openings.

2 Methodology

There are at least two approaches to forecasting COVID-19 dynamics: based on mechanistic models
and based on machine learning. Mechanistic models are better at capturing an epidemiological curve
and describing the overall trajectory of disease dynamics, hence providing long-term insights into
where the disease might go. Machine learning, in turn, can provide more precise data-driven forecasts,
especially in the short-term horizons, while suffering from limited interpretability. We propose a unified
reinforcement learning (RL) framework combining the two approaches. That is, long-term trajectory
forecasts are used in machine learning techniques to forecast local variability, which is not captured by
a mechanistic model.

The choice of the “best” model generally balances model fidelity, explanatory features, data avail-
ability, and computational requirements. A summary of these features is described in [2] and is pre-
sented in Figure 3. In [11] we conducted a comparison of the simpler system dynamics model and an
ABM of pandemic flu with a number of interventions. Not surprisingly, higher granularity brings higher
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fidelity but also increases uncertainty because of the variability of model parameters and structural
assumptions.

In the current study, we start mechanistic modeling with a system dynamics approach. System
dynamics models are quick to execute and thus are easy to calibrate. Future ABMs will start with the
average parameter values of the system dynamics model and will expand around those values. Our
system dynamics model divides the population into Susceptible, Exposed, Infectious, and Recovered
individuals and considers the movements of individuals between these compartments. Thus, the model
is commonly called an SEIR model. Specifically, for COVID-19 we also consider whether individuals
are symptomatic or asymptomatic, which in turn requires estimation of disease transmission from an
asymptomatic person. Assuming homogeneous mixing, the initial SEIR model can be described in a
differential equation form:
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where S, E, I, and R denote susceptible, exposed, infected, and recovered, respectively, and for sim-
plicity total immunity is assumed. In turn, k = a, s denote symptomatic and asymptomatic subgroups,
respectively; pk is a fraction of symptomatic or asymptomatic cases; and β, µ, γ and δ are transmis-
sion rate, infectivity period, recovery, and excess mortality rates, respectively. Quarantine of identified
symptomatic and asymptomatic cases is denoted by ξ. We assume that there exists no excess mortality
among asymptomatic cases (i.e., δa = 0). Upper indexes correspond to age groups m and v. Finally, we
assume homogeneity of the daily number of contacts within an age group and heterogeneity between

Figure 3: Hierarchy of simulation models in increasing levels of complexity. At the higher level Statis-
tical, Markov, and System dynamics models do not distinguish between individuals in the populations
and describe populations (or subpopulations) as a whole. As the names suggest, microsimulation and
agent-based models describe each individual in the population and thus could be averaged across specific
characteristics to obtain population-level estimates. In the current project, we consider a challenging
question. Do these modeling approaches have to be mutually exclusive? Each brings something to the
forecast, and perhaps we can benefit from combining at least two of them.
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groups.
This model is defined at the county level and could be further expanded to represent rural or urban

parts of the county, adding migration of individuals between counties and between urban and rural
county components. The model is adequate enough to describe the dynamics of COVID-19 in most
counties. For low-density rural counties (e.g., in Appalachia) the assumption of homogeneous mixing is
no longer valid, and an explicit ABM might be more adequate. For the sake of simplicity, we still keep
the differential equation formalism but add a stochastic transmission component. Future models will
be fully agent-based to consistently describe local geographic elements of disease clusters and patient
assignments to hospitals. We fit the model to the reported case data where we also need to consider
multiple reporting biases such as under-reporting, reporting of certain subpopulations (e.g., age 65+),
and the availability of disease test kits.

Disease transmission parameters are key to the understanding of future disease dynamics; there-
fore, we also consider county vulnerability indices, which we calculated based on multiple sources of
socioeconomic and health data. We have developed a county vulnerability dashboard (Figure 4) that
is publicly available at https://RTImerge.org.

Figure 4: County vulnerability index with respect to COVID-19 dynamics

This mechanistic modeling effort results in describing the dynamics of symptomatic and asymp-
tomatic infected individuals. Figure 5 shows an example of a model fit to Gaston county data. Deter-
ministic SEIR models produce a smooth curve fit that tracks past mean-field disease dynamics. The
key component of prediction is forecasting how policy measures will impact the transmission rate. For
that purpose, we developed a model linking the dynamics of a SEIR beta parameter with public health
actions. Mechanistic models allow one to simulate a variety of scenarios and pre-train a deep learning
model on these scenarios. Although the SEIR model allows us to consider “what if” scenarios and
provide mechanistic explanations of “why,” they don’t capture all the richness of disease dynamics.
The addition of stochastic components leads to consideration of uncertainty and higher boundaries of
risk through a family of stochastic realizations.

Mechanistic models are limited in their applications because they only produce results based on a
hardwired mechanism which could be miss-specified. Furthermore, such models can neglect a variety
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Figure 5: Examples of model fit to Gaston County case reports

of smaller factors that are collectively influential. These factors could be captured by a mechanism-
agnostic data-driven model that learns with the data. For example, Long-Short Term Memory (LSTM)
algorithms can capture short- and long-term factors that can also change in time.

In this project, we aim to develop a reinforcement learning (RL) framework which systematically
combines mechanistic SEIR models with data-driven LSTM algorithms to get the best of both worlds:
that is, the interpretability of mechanistic models and predictive capabilities of deep learning methods.

Our approach is described below and is illustrated in Figure 6:

1. Based on past data we fit the SEIR model and train the LSTM model.

2. Based on forecasted subjective beliefs on policy changes in the future use the SEIR model to
predict the numbers of infected individuals (smooth curves).

3. Use the SEIR-predicted data as input into the LSTM model to produce an improved forecast.

4. Through reinforcement learning update both the SEIR and LSTM forecasts as new data become
available.

Our goal is to build a highly adaptive model capable of readjusting its prediction on the future
disease course, in accordance with changes in public response and bio-atmospheric information. As
shown in Figure 6, RL plays an important role to control the dynamic of the SEIR beta parameter,
which is directly linked to public health actions. Hence, this model-free RL adapts its parameters on
the fly (i.e., learning from experience and using the latest updated official data). As a consequence,
we will be able to update our predictions in potentially highly uncertain and volatile disease scenarios
such as the current coronavirus spread.

The main difference between the proposed RL methodology with respect to other approaches is the
ability to summarize multiple policies for outbreak response via parameter adaptation in our mech-
anistic model. Indeed, existing techniques primarily focus on learning context-dependent policies for
complex epidemiological models, in which the conventional approach consists of evaluating the expected
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Figure 6: Reinforcement learning of mechanistic (SEIR) and data-driven (LSTM) models.

performance of different potential interventions via stochastic simulations [9, 12]. However, such ap-
proaches predominantly model the RL problem from a spatial perspective, leaving the time variable as
only part of the evolution of the states [1, 6] and mostly obtaining optimal decisions in fully observable
environments [7]. In contrast, our proposed approach accounts for the dynamics of COVID epidemics
via mechanistic models and allows us for building highly adaptive models capable of readjusting the
delivered forecasts for the future disease course.

3 Conclusion and Future Work

The ultimate goal of this project is to develop a novel methodology for forecasting the COVID-19 spread
via synergistic interaction between mechanistic and data-driven models under the RL framework. In
particular, the proposed methodology is based on the new idea of using RL as a part of solving a
time-series forecasting problem under the assumption of dynamic stability and requires identification
of the following main components: states, environment, reward function, and agent interactions. Since
RL focuses on learning an optimal policy, we also need to obtain significant feedback between agents
and the ongoing behavior of the system and ensure that our adaptive learning still can be formulated
as a Markov Decision Process problem (i.e., the challenges that are both largely unsolved in a context
of RL for space-time data).

By effectively combining mechanistic models with deep learning tools, the proposed RL approach
to epidemiological forecasting can harness the strength of both theoretical and data-based models and
deepen our understanding of the hidden mechanisms behind COVID-19 progression. In the near term
future, we plan to investigate the utility and limitations of the proposed methodology at the county level
and then investigate the transferability of the derived tools to other states and spatial data resolution.

Acknowledgements

This work is supported in part by the grants from the National Science Foundation DMS 2027793/2027802
and the ConTex Postdoctoral Fellowship grant.

31



References

[1] D. Bertsekas. Rollout, Policy Iteration, and Distributed Reinforcement Learning. Athena Scientific,
1 edition, 8 2020.

[2] G. Bobashev. Simulation modeling of hiv infection—from individuals to risk groups and entire
populations. In C. Chan, M. G. Hudgens, and S.-C. Chow, editors, Quantitative Methods for
HIV/AIDS Research, chapter 10, pages 201–229. Chapman & Hall/CRC Biostatistics Series, 1
edition, 8 2017.

[3] J. Cajka, P. Cooley, and W. Wheaton. Attribute assignment to a synthetic population in support
of agent-based disease modeling. Methods report (RTI Press), 19:1–14, 09 2010.

[4] P. Cooley, L. Ganapathi, G. Ghneim, S. Holmberg, W. Wheaton, and C. Hollingsworth. Us-
ing influenza-like illness data to reconstruct an influenza outbreak. Mathematical and Computer
Modelling, 48:929–939, 02 2008.

[5] N. Ferguson, D. Cummings, C. Fraser, J. Cajka, P. Cooley, and S. Burke. Strategies for mitigating
an influenza pandemic. Nature, 442:448–52, 08 2006.

[6] P. Hernandez-Leal, B. Kartal, and M. Taylor. A survey and critique of multiagent deep reinforce-
ment learning. Autonomous Agents and Multi-Agent Systems, 33, 10 2019.

[7] S. Ivanov and A. D’yakonov. Modern deep reinforcement learning algorithms, 2019. Available at
https://arxiv.org/abs/1906.10025.

[8] V. Leonenko and G. Bobashev. Analyzing influenza outbreaks in russia using an age-structured
dynamic transmission model. Epidemics, 29:100358, 2019.

[9] P. Libin, A. Moonens, T. Verstraeten, F. Perez-Sanjines, N. Hens, P. Lemey, and A. Nowé. Deep
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