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Abstract

The Internet of Things (IoT) has recently received significant attention. An IoT device may
possess an array of sensors that for example monitors the air temperature, carbon monoxide
level, wifi signals, and sound intensity. IoT data is initially created on the device, then sent
over to a central database system (e.g., the cloud) that organizes and prepares such data for the
ongoing use by myriad applications, which include but are not limited to smart home, smart city,
the industrial internet, connected cars, and connected health. Data generated by IoT devices
is inherently spatial and temporal. For instance, an audio signal represents the variation of
the sound intensity (retrieved by a sound sensor) over the time dimension. Furthermore, IoT
devices are either installed in a static location (e.g., a building, a traffic intersection) or can be
attached to moving objects such as a connected vehicle or a wearable device. In this article, we
argue that existing IoT data systems do not properly consider the SpatioTemporal aspect of such
data. Hence, the article represents a call for action to the SIGSPATIAL community in order to
conduct research on building systems and applications that treat both the spatial and temporal
dimensions of IoT data as first class citizens.

1 Motivation

The Internet of Things (IoT) has recently received significant attention from both industry and
academia. The Boston Consulting Group predicts that by 2020, $267 Billion will be spent on IoT
technologies, products, and services [1]. IoT represents a network of devices, each equipped with a va-
riety of sensors (and actuators) that sense and collect data about the local environment. For example,
an IoT device may possess an array of sensors that monitors the air temperature, carbon monoxide
level, wifi signals, and sound intensity. Data created by an IoT device goes through three main phases:
the first phase is the initial creation, which takes place on the device, and then sent over the Internet
to a central database system (e.g., the cloud). The second phase is how the central database system
collects and organizes this data. The third phase is the ongoing use of such data by myriad applications,
which include but are not limited to smart home, smart city, the industrial internet, connected cars,
and connected health.

Data generated by IoT devices has the following key characteristics: (i) Spatial and Temporal: Data
collected by a device represents a physical quantity, i.e., a signal, that continuously varies over time.
For instance, an audio (sound) signal represents the variation of the sound intensity over the time
dimension. Also, IoT devices are usually installed in a static location such as a building or a traffic
intersection. However, some IoT devices are attached to objects that move in space like a connected
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vehicle or a wearable device. In both cases, the data generated by an IoT device possess a spatial
location attribute that represents the longitude and latitude coordinates of the sensed observations.
(ii) Heterogeneous and Interconnected: Not all IoT sensors are the same; a spectrum of various sensors
exists and each sensor measures a different thing. For instance, a camera generates image signals
while a microphone generates an audio signal; each signal type has different physical and mathematical
characteristics [2]. For example, an ultrasonic motion sensor sends a signal when it detects motion
whereas a microphone sensor only sends a signal when it detects a sound. Also, IoT data is inherently
interconnected and can be linked to other data sources such as the city data, the web and social media.

Given such characteristics, a central data system must provide a spatial / spatio-temporal data
management query Application Programming Interface (API) side-by-side with a digital signal pro-
cessing API for programmers to develop IoT applications. Such requirement makes it really difficult for
off-the-shelf systems to digest and process IoT data. The problem becomes even more challenging as
the volume of data collected from IoT devices increases at a staggering rate. Today, RADAR, LIDAR,
and CAMERA sensors have a bandwidth of up to 15 Mbit/sec, 100 Mbit/sec, and 3500 Mbit/sec,
respectively. A connected vehicle, equipped with several of such sensors, generates data at a rate that
exceeds 25 GB per hour [3]. The volume of such data will increase even more with already 2.8 trillion
IoT devices deployed globally in homes and road intersections by the year 2019 [4], the 10 million
self-driving cars equipped with dozens of sensors to be on the road and the 7 million drones to be
flying in U.S. skies by 2020 [5, 6]. That makes it almost impossible for state-of-the-art big spatial data
systems to handle real-time or near-real time IoT analytics applications.

2 A Spatio-Temporal Data Model for IoT Data

Recently proposed IoT data models [7, 8] over the semantics of things, sensor observations, and appli-
cations. Several works model IoT data for health-specific application such as real-time prediction of
blood alcohol content using smartwatch sensor data [9]. Many papers model IoT data for smart city
applications [10, 11]. One potential research direction will build upon these efforts. We can model
IoT data using the SenosorThings standard published by the Open Geospatial Consortium (OGC) in
2016. The standard provides a formal / generic API to model and query IoT things, which can rep-
resent a smart car, smart watch, traffic camera, smart oven, etc... The API also models the collected
observations, connections among IoT devices as well as their spatial and temporal attributes [12].

Recent works model IoT data, given its interconnected and linked nature, as a graph [13, 14], which
integrates data generated by various IoT devices as well as integrates IoT data with other relevant
data sources, e.g., semantic web and infrastructure networks. Thus, it makes sense to model linked
IoT data as a graph and store it in a graph database system such as Neo4j [15] and Titan [16],
which also support spatiotemporal attributes that can capture the location and time aspects of sensed
observations [17, 18, 19, 18, 20, 21]. As depicted in Figure 1, the IoT graph is modeled as a property /
labeled graph G = (V,E, ϕ, ψ) such that (1) V is a set of vertexes that represent things (IoT devices
and sensors) in an IoT network. Vertexes can also represent real world entities generated by other data
sources, e.g., Knowledge Graphs, Social Graphs, and the Web. (2) E is a set of edges that connect
IoT things and also connect IoT things to other entities collected from other data sources. (3) ϕ is
a mapping function ϕ : V → L, where L is a set of labels or types, (4) ψ is a mapping function
ψ : E → L [22]. The IoT graph is a property graph that possesses at least one spatial label/type in L.
In such a graph, some vertexes semantically represent spatial objects, which possess spatial location
attributes, e.g., point, polygon. The spatial attribute of a vertex is denoted as v.loc. Given such graph,
a user may ask a query like “Find patterns in the IoT graph of audio signals observed by an IoT device
located in Downtown Tempe such that the observation value is larger than 140 dB”. A main challenge
though is how a graph data system can evaluate the combination of spatial (e.g., range, K-Nearest
Neighbors, spatial join), temporal, and graph predicates on linked IoT data [23, 24, 25].
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Figure 1: IoT modeled using the SensorThings OGC standard

3 Scalable Geospatial Processing of IoT data

There exist a few research efforts, which focus on developing scalable data infrastructure for IoT
data [26, 9]. For instance, Dey et. al proposed a scheme where edge devices offer free computational
slots to servers in a cloud based data analytics system [27]. The Aura system prototype [28] enables
building ad-hoc clouds using IoT devices in the nearby physical environment. Jiang et. al evaluated
cloud-based data storage options for IoT data [29] whereas Li et. al experimented the use of NoSQL
database technology to store massive-scale IoT data [30]. However, none of these efforts takes into
account spatio-temporal data processing operations, which are vital for processing IoT data [9].

State-of-the-art spatial and spatio-temporal data systems [31, 21, 32, 33, 34] do not provide native
support for digital signal processing and machine learning operations whereas numerical frameworks
such as MatLab do not provide in-house support for spatial data management. Futhermore, Such
systems do not provide an out-of-the-box API to handle IoT sensor data. For instance, the Apache
Spark Dstream API that can chop up live IoT data stream, represented as observations, into batches
of X seconds. Spark can then treat each batch of data as an RDD and processes them using RDD
operations. Finally, the processed results of the RDD operations are returned in batches. However, such
APIs are not easy for programmers to develop IoT applications and are not natively optimized to run
the combination of spatial, spatio-temporal, digital signal processing, and machine learning operations
on IoT data. Examples of queries that require such combination include: “Q1: Report gunshots heard
in Downtown Tempe area between 13:45 and 14:00 pm on 2018/03/01”, “Q2: Report gunshots heard
nearby (e.g., within 0.1 mi) a School in the City of Tempe”. Q1 needs to filter out IoT data records
that neither lie within Downtown Tempe nor observed between 13:45 and 14:00 pm on 2018/03/01. Q1
also needs to convert the audio signal into a time-frequency representation, e.g.., mel-spectrogram, by
applying Fast Fourier Transform (FFT), then discrete cosine transform, and finally applying an urban
sound classifier to detect gunshots. Q2 does the same with the exception that it applies a spatial join
operation to retrieve observations only nearby schools.

Having said that, a promising research direction will incorporate IoT data awareness in state-of-
the-art big spatial data systems such as Apached Sedona (GeoSpark) [35]. Furthermore, that also

44



requires that system developers design a middleware framework, which understands the IoT devices
streaming data to the central data system on one side and the requirements of applications accessing
such IoT data on the other side. The proposed middleware system will tune the central data system
to adaptively decide whether or not to eagerly propagate data from the device to the central system.
I plan to modify existing relational and spatial query processing algorithms to leverage the IoT device
capabilities and handle the different rate and types of data generated by various IoT devices. To capture
the interconnected nature of IoT data, a spatial data system must also provide a graph processing API
in addition to the spatial / spatio-temporal API. Such a combination is already supported by existing
graph data systems [15, 16, 36, 37], however such systems treat the spatial attribute as a second class
citizen, and hence cannot achieve real time or near real time performance. The community needs to
craft efficient query operators that accelerate location-aware graph queries and also investigate new
index structures that take into account network aspect of linked IoT data as well as the spatial and
Spatio-Temporal aspects.

4 Conclusion

The Internet of Things (IoT) is getting more popular every day. The spatial, temporal, big, fast,
heterogeneous, and interconnected nature of collected IoT data makes it difficult for off-the-shelf spa-
tial data systems to digest and process such data, especially for real-time or near-real time analytics
applications. The goal of this article is to encourage the community to design and develop spatial and
spatiotemporal data infrastructure that can capture, store, query, analyze data from connected IoT
devices at scale. The outcome of that research can provide a tool for data scientists, policy makers,
and businesses to better utilize and extract value from IoT data growing at a staggering rate.
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