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ABSTRACT
Indoor space navigation has always been an issue without
GPS localization. Especially for complicated cases such as
emergency evacuation and dynamic navigation, there is no
existing efficient solution to the best of our knowledge. Lo-
calization in indoor spaces has to rely on sensing devices
(e.g., Radio Frequency Identification(RFID) readers, WiFi
routers, bluetooth beacons) rather than GPS, and indoor
floor plans are more complicated than road networks. Con-
sequently, existing spatial outdoor query techniques are not
suitable for this new challenge. However, raw data generated
by sensing devices suffers from false negatives and errors. As
a result, filtering methods are necessary for accurate local-
ization.

We propose a novel dynamic shortest path navigation
strategy to enable efficient navigation for emergency evacu-
ation in indoor spaces. This strategy achieves optimal time
efficiency by: 1) using a Bayesian inference based concur-
rent model, which integrates dynamic shortest path search-
ing into the filtering process, thus achieving an efficient and
accurate search for any time-sensitive situation; 2) storing
alternative parent nodes along the shortest path search for
a fast, dynamic search.

We use both particle filters and the Kalman filter to study
which one is more suitable for dynamic environments. In
general, we develop an innovative, dynamic shortest path
navigation solution based on Bayesian inference localization.

1. INTRODUCTION
People spend most of their time in indoor spaces. Indoor

spaces are growing larger and more complex (e.g., multi-
functional shopping malls, NYC subways, etc.). Therefore,
users will be likely to use spatial navigation mobile apps to
find friends or Points Of Interest (POI) in indoor places. In
extreme cases like fires or terrorist attacks, indoor spatial
navigation could even save lives. However, existing spatial
query solutions [2] for Euclidean distances or road networks
cannot be applied to indoor spaces because of the lack of

GPS signals. Furthermore, indoor floor plans are more com-
plicated with multiple levels involved. The uses of sensing
devices have expanded beyond traditional fields and made
indoor localization possible. Take RFID technologies as an
example. When a tag is in the detection range of a reader,
the reader recognizes the tag and generates a reading record.
Several types of deviations can be observed from sensor de-
vices, such as sensitivity errors, bias, noise and so on. As
a result, the raw data generated by sensing devices can not
be used for localization directly. Therefore, we use Bayesian
inference based filtering methods, such as particle filters [4],
to accurately calculate the position of a user.

More importantly, in our research, we focus on dynamic
navigation rather than static spatial queries. Dynamic nav-
igation is more suitable for indoor environments for the fol-
lowing two reasons: 1) Indoor routes could change at any
time, especially during an emergency, during which a route
could be blocked in a short time. In such scenarios, static
solutions would not be workable, because the system has to
calculate all over again; 2) Sensing devices localization is not
as good as GPS. They have to correct themselves sometimes,
which will affect the navigation process.

Based on the aforementioned reasons, we apply a con-
current model to Bayesian inference to accelerate dynamic
navigation. There are two reasons why we apply this model:
1) In event-driven cases, there is a high possibility that the
user is in a room or in a highly-recognizable space. We do
not need to know the exact location of a user to navigate;
especially in an emergency situation, we need to navigate
as soon as possible; 2) Bayesian inference has an updating
phase. In time-sensitive cases, it is crucial to take advantage
of this phase and accelerate the whole process.

2. APPROACH AND UNIQUENESS
2.1 Design

Our accelerated dynamic navigation has two components:
Bayesian-based Concurrent Navigation and Redundant Track-
ing method.

Bayesian-based Concurrent Navigation is based on Bayesian
Inference methods, and it is combined with a Bayesian up-
dating phase. More generally, it could be added to any lo-
calization method with an updating phase involved. Redun-
dant Tracking is applicable to any dynamic queries. It is
extremely suitable for indoor spaces.

2.1.1 Bayesian-based Concurrent Navigation
Each time a position is calculated, multiple resamplings

/re-calculations are required for Bayesian Inference meth-
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Algorithm 1 Bayesian inference-based dynamic navigation

1. retrieve Objs’s readings from the data collector
2. for every second of readings do
3. Initialization
4. Normalize the weights of Objs
5. Resampling/Re-calculation
6. Store locations with weight > τ (τ is the threshold)
7. Redundant Shortest Path Search
8. end for
9. return navigation based on weight and location

ods. In the process of resampling/re-calculation, a user has
to wait for a response, which is unacceptable in an emer-
gency. Here, we propose concurrent dynamic indoor naviga-
tion combined with Bayesian inference.

We use particle filters and the Kalman filter as examples.
Particle filters Traditional particle filters method con-

sists of three phases: initialization, particles updating, and
particles resampling. At first, a set of particles are uni-
formly distributed in the search area. Then the particles are
updated with Gaussian distribution. After updating, the re-
sampling process will remove particles with lower weight and
replicate particles with higher weight. In the initial process,
a user has to wait enough rounds of resampling for accu-
rate localization. We take advantage of this time period to
conduct dynamic shortest path searches on all potential lo-
cations. We start as soon as we get the first reading, and
search a shortest path from every possible location. We also
maintain all possible paths to avoid further calculation.

The Kalman filter The Kalman filter uses a series of
measurements observed over time. It assumes an object’s
speed is a Gaussian variable, and for each reading, the al-
gorithm recursively enumerates all possibilities. At last, the
algorithm integrates the pdf (probability distribution func-
tion) of the object’s possible locations. For each update
phase, the current priori prediction is combined with current
observation information to refine the state estimate. Same
as particle filters, we integrate our dynamic navigation into
the state prediction phase.

2.1.2 Redundant Tracking Approach
We assume the routes are constantly changing. In order

to do the incremental search only, our algorithm uses “re-
dundant” storage to keep track of potential shortest paths
along the way. For each visited node, we store λ alternative
parent nodes (λ is the number of alternatives, which is a
parameter).

Even though redundancy is required for this approach,
creating extra storage will not be a burden for the search
process because indoor floor plans are relatively smaller than
outdoor road networks.

Algorithm 1 shows the general structure to integrate re-
dundant tracking into Bayesian inference. We check all pos-
sibilities for each Bayesian updating. When the current pos-
sibility is good enough for a search, we execute redundant
shortest path search instantly.

2.2 Data Settings
In our research, we focus on the setting of an indoor envi-

ronment and RFID technologies. A number of RFID readers
are deployed along the hallway. A user is attached with an
RFID tag, which can be recognized by any reader when the
user passes the reader’s detection range. The system will
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Figure 1: Varying the number of moving objects.

store all raw readings generated by readers.

2.3 Uniqueness
While other researchers have made use of Bayesian Infer-

ence to localize indoor targets, to the best of our knowl-
edge there is no previous work that combines Bayesian in-
ference with dynamic indoor navigation. In addition, previ-
ous works pay more attention to static queries (e.g., kNN,
range query), while our work focuses on dynamic queries to
support indoor navigation. An approach based on dynamic
settings may be more practical for indoor queries.

3. PRELIMINARY EXPERIMENTS AND FU-
TURE WORK

We carry out experimental evaluations using the data gen-
erated by real-world parameters, and compare the results
with other symbolic model-based solutions [3].

We test the effect of particle filters and the Kalman fil-
ter with various parameters (e.g. query window size, num-
ber of particles, number of moving objects, activation range,
continuous query, etc.). We use PF, KF, and SM to repre-
sent the curves of the particle filter-based method, Kalman
filter-based method, and symbolic model-based method, re-
spectively. Due to limitations of space, we only show 1) the
Kullback-Leibler (KL) divergence of range query; 2) hit rate
of kNN query by varying the number of moving objects.
Figure 1 demonstrates both filtering methods have better
scalability than the symbolic model based solution.

Our preliminary results show that particle filters and the
Kalman filter based spatial queries are efficient and accurate
enough to extend to dynamic navigation. We will compare
the speed of particle filters and the Kalman filter to see
which one is more suitable for dynamic navigation.
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