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Message from the Editor

Chi-Yin Chow
Department of Computer Science, City University of Hong Kong, Hong Kong

Email: chiychow@cityu.edu.hk

In the first section, we have the top four papers selected for the 1st ACM SIGSPATIAL Student Research
Competition (SRC) held at the ACM SIGSPATIAL 2016. The SRC chair is Prof. Moustafa Youssef (Egypt-
Japan University of Science and Technology).

The second section consists of two event reports from:

1. The 5th ACM SIGSPATIAL International Workshop on Mobile Geographic Information Systems (ACM
SIGSPATIAL MobiGIS 2016)

2. The 7th ACM SIGSPATIAL International Workshop on GeoStreaming (ACM SIGSPATIAL IWGS 2016)

I would like to sincerely thank all the 1st ACM SIGSPATIAL SRC authors, SRC chair (Prof. Moustafa
Youssef), and event organizers for their generous contributions of time and effort that made this issue possible.
I hope that you will find the newsletters interesting and informative and that you will enjoy this issue.

You can download all Special issues from:

http://www.sigspatial.org/sigspatial-special

.
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ACM SIGSPATIAL 2016 Students Research Competition
Report

San Francisco, USA - October 31, 2016
Moustafa Youssef

Department of Computer Science and Engineering
Egypt-Japan University of Science and Technology (E-JUST)

(Student Research Competition Chair)

For the first time, the ACM SIGSPATIAL 201 hosted the SIGSPATIAL ACM Student Research Competition
(SRC) this year. SRC allows undergraduate and graduate students to share their research results and exchange
ideas with other students, judges, and conference attendees; understand the practical applications of their re-
search; perfect their communication skills; and receive prizes and gain recognition from ACM and the greater
computing community.

Student Research Competition winners were selected in three phases: In the first phase, a two-page abstract
was judged based on novelty, impact, approach, results, and contributions to the field of spatial systems and
algorithms. Selected competitors prepared a poster for demonstrating their work during the conference in the
second phase. Those selected for further competition at the final phase gave a short talk about their research
project in front of the judging committee and conference attendees. All SRC participants at the conference
received support to cover their travel to the conference. Three graduate category and one undergraduate category
winners of the SIGSPTIAL 2016 SRC were announced at the conference banquet and received certificates,
medals, as well as monetary awards from the ACM. In addition, the top winner from each category will advance
to the SRC Grand Finals, where winners from various ACM SIGs are evaluated to nominate the ACM-wide SRC
winners. The winners of the Grand Finals will be recognized at the Annual ACM Awards Banquet, the same
banquet that also recognizes the Turing Award winners.

The winning entries cover different areas of interest to the SIGSPATIAL community including computa-
tional steering for geosimulations, accelerating the calculation of the minimum set of viewpoints for maximum
coverage over digital elevation model data, dynamic indoor navigation, and city-scale mapping of pets using
georeferenced images.

I would like to thank all the authors of papers and the SRC judging committee for their professional evalua-
tion and help in the three phases of the competition. A special thanks goes to Microsoft Research for supporting
the SRC across the different ACM SIGs. Finally, I hope that the first Student Research Competition will in-
spire new research ideas and encourage further participations from all students working in areas relevant to the
SIGSPATIAL community.
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SRC: Accelerating the Calculation of Minimum Set of 
Viewpoints for Maximum Coverage over Digital Elevation 

Model Data by Hybrid Computer Architecture and Systems 
Chenggang Lai, Miaoqing Huang   

CSCE Department 
University of Arkansas 

Fayetteville, Arkansas 72701, USA 
Email: {cl004,mqhuang}@uark.edu 

Xuan Shi  
Department of Geosciences  

University of Arkansas 
 Fayetteville, AR 72701, USA 

Email: xuanshi@uark.edu 

ABSTRACT
This paper introduces how to accelerate the calculation of the 
minimum set of viewpoints for the maximum coverage over digital 
elevation model data using Intel’s Xeon Phi and a computer cluster 
equipped with Intel’s Many-Integrated-Core (MIC) coprocessors. 
This data and computation intensive process consists of a series of 
geocomputation tasks, including 1) the automatic generation of 
control viewpoints through map algebra calculation and 
hydrological modeling approaches; 2) the creation of the joint 
viewshed derived from the viewshed of all viewpoints to establish 
the maximum viewshed coverage of the given digital elevation 
model (DEM) data; and 3) the identification of a minimum set of 
viewpoints that cover the maximum terrain area of the joint 
viewshed. The parallel implementation on the hybrid computer 
cluster was able to achieve more than 100x performance speedup 
in comparison to the sequential implementation. The outcome of 
the computation has broad societal impacts since the research 
questions and solutions can be applied to real-world applications 
and decision-making practice.   

1. INTRODUCTION

              

Identifying a minimum set of observational viewpoints that can
cover the maximum area of a given terrain has high values in many 
applications including civil engineering, infrastructure
optimization and management, and military operations.
Theoretically this minimum set problem can be elaborated as given
a set U of n elements, and a collection I = [S1, S2, ..., Sm] of m 
subsets of U such that the union of S equals U. The set cover
problem is to identify the smallest subset of S whose union covers
U. Such an optimization problem is NP-hard [1]. More formally,
no polynominal solution has been identified for such a set coverage 
problem.

Approximate solutions can be explored using heuristic 
strategies, which typically take a very long process. In order to 
reduce the computation time, we use computer clusters with 
coprocessors/accelerators to parallelize the application. To achieve 
the goal of this research, three computation tasks have to be 
implemented. Firstly, for any given DEM data, all potential control 
viewpoints will be extracted automatically through map algebra 
calculation and hydrological modeling approaches. Secondly, the 

viewshed calculation has to be implemented on each viewpoint to 
generate the joint viewshed of all viewpoints to establish the 
maximum viewshed coverage of the given DEM. The R3 [2] and 
the sweep line [3] algorithms are implemented in this study. Thirdly, 
the minimum set coverage computation is  to derive the minimum 
set of viewpoints that have their joint viewshed equals to the 
maximum coverage, as shown in Algorithm 1. 

Algorithm 1. Finding a Minimum Set of Viewpoints for the 
Maximum Coverage of Digital Terrain. 
1: Initialize the solution set S to empty; 
2: while (joint viewshed criterion is not satisfied) do 
3:      for (each viewshed Pi in the potential points P) do 
4:         Compute its overlap fractions and Euclidean distances 

between viewpoints and S; 
5:         if (overlap fractions > overlap criterion or Euclidean 

distances < distance criterion) 
6:   Pi cannot be added to S; 
7:   Calculate the joint coverage; 
8:   if (joint coverage > maximum joint coverage) 
9:   Maximum joint coverage := joint coverage; 
10:     end for; 
11:     Add Pi to S and remove it from P; 
12: end while; 

2. METHODS AND EXPERIMENTS
We conducted our experiments on two platforms, the NSF
sponsored Arkansas High Performance Computing Center
(AHPCC) computer cluster, which is a CPU cluster (i.e., Xeon E5-
2670 8-core 2.6 GHz processors), and Beacon supercomputer,
which is a hybrid cluster containing both CPUs (i.e., Intel Xeon E5-
2670 8-core 2.6 GHz processors) and Intel MIC coprocessors (i.e.,
Intel Xeon Phi 5110P). Task 1 (i.e., identifying control points) runs 
on the CPU sequentially and only takes 1 minute. Both Task 2 (i.e., 
viewshed computation) and Task 3 (i.e., finding the minimum set
of viewpoints) are time-consuming and thus have to be parallelized. 
The parallel solutions are implemented using the following three
models.

MPI: AHPCC cluster is employed for the viewshed calculation and the
parallel minimum set calculation through MPI commands. In this
implementation, a single-thread MPI process is directly executed on a CPU 
core. We used sweep line algorithm for viewshed calculation on CPU. 

MIC+Offload: In this model, the MPI processes are hosted on the CPU
cores, which offload the computation including data to the MIC processors 
on Beacon. The host MPI process on CPU issues multiple threads to the
MIC card using OpenMP so that each thread works on one or more
coefficient vectors depending on the number of participating MIC cards.
The computation tasks are done on MIC processors, while CPU cores just 
wait for the results. We used R3 algorithm for viewshed calculation on
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MIC cards as sweep line algorithm has data dependency issue. Algorithm 
1 is applied for the minimum set calculation. 

 MIC+Hybrid: In this model, both CPUs and MICs are utilized for data 
processing on Beacon. First the workload is distributed to CPUs through 
MPI. Then a host CPU will offload part of the workload to a MIC card 
using OpenMP. On the host CPU, we also use OpenMP to spawn multiple 
threads for parallel processing. The R3 algorithm is used for viewshed 
calculation, while Algorithm 1 is applied for the minimum set calculation. 

3. RESULTS AND DISCUSSION  
 

 
(a) Task 2: viewshed 

computation. 

 
(b) Task 3: minimum set 

calculation. 

Figure 1. Performance comparisons. 

 
(a) 1 foot, 10 FCC 

antennas, 33% coverage 

 
(b) 30 feet, 10 FCC 

antennas, 46% coverage 

 
(c) 60 feet, 10 FCC 

antennas, 49% coverage 

 

(d) 1 foot, 4 viewpoints, 
50% coverage 

 

(e) 30 feet, 4 viewpoints, 
50% coverage 

 

(f) 60 feet, 3 viewpoints, 
50% coverage 

Figure 2. Visibility coverage at different offset heights. 

The 3-meter resolution DEM data for West Virginia is used in this 
study. Federal Communications Commission’s antenna data are 
used for validation and comparison. Although multiple DEM tiles 
were tested in this experiment, only the result on Summersville is 
reported. This DEM tile has 3,646 × 4,626 pixels, in which 10 FCC 
antennas are installed in this DEM tile. 4,106 viewpoints are 
automatically derived from Task 1 calculation. The joint viewshed 
of these 4,106 viewpoints can cover about 99.5% of this tile of 
DEM. The remaining task is to identify the minimum set of 4,106 
viewpoints that can cover the same joint viewshed area. 

The performance of Task 2 (i.e., viewshed computation) under 
different execution models are shown in Figure 1(a). For the offload 
model, each host CPU will host one MPI process, which offloads 
the computation including data to the MIC coprocessors. We 

schedule 240 threads to a MIC card. For the hybrid model, both 
CPUs and MICs are allocated for data processing. We run 4 threads 
on the host CPU and evenly divide the workload between a host 
CPU and its corresponding MIC coprocessor. We also schedule 240 
threads to a MIC card. From the result, the hybrid model has the 
best performance. However, the performance of pure MPI model 
(100 CPUs on AHPCC) is better than that of offload model, since 
the sweep line algorithm is more efficient than R3 and there is about 
10 times performance difference between them. From Figure 1(b) 
we can see that the execute time of minimum set implementations 
under offload model and hybrid model are much shorter than the 
time under the pure MPI model. 

The proposed workflow successfully derives the minimum set 
of 1,217 viewpoints to achieve the goal of the maximum coverage 
of 100%, which means the selected minimum set of viewpoints can 
achieve the same coverage of 4,106 viewpoints on the tile of 
Summersville DEM. Obviously such a minimum set still contains 
a large number of viewpoints because many single cells in the DEM 
grid can only be seen by one viewpoint. When the criteria of 
maximum coverage are changed, the number of minimum set can 
be reduced significantly. 

Figures 2(a)-2(c) display the visibility coverage of current 
locations of FCC antennas at different offset heights. Even when 
the height of the antennas is set to 60 feet, these 10 FCC antennas 
can only cover 49.74% of this area. Figures 2(d)-2(f) display the 
result derived from the minimum set calculation. Only 4 antennas 
are required to cover 50% of the area even when the offset height 
is set to 1 foot, or only 3 antennas are required when the offset 
height is set to 60 feet.  

4. CONCLUSIONS 
While a few relevant works [4] were conducted in the past decades, 
we resume this challenging research on generating a minimum set 
of viewpoints for the maximum coverage over large-scale digital 
terrain data. The comprehensive workflow has been implemented 
and validated with satisfactory results in comparison to the current 
locations of FCC antennas. The computational bottleneck of the 
proposed workflow mainly lies in viewshed/joint viewshed 
calculation, counting visible pixels, computing the ratio of overlaid 
viewshed, and minimum set calculation. Although deploying CPU 
clusters can help reduce the computational time, modern 
accelerator technologies can achieve better efficiency and 
scalability when large volumes of high-resolution DEM data are to 
be processed. 

5. REFERENCES 
[1] Feige, U. 1996. A threshold of ln n for approximating set 

cover. In Proceedings of the twenty-eighth annual ACM 
symposium on Theory of computing, pp. 314-318. ACM 

[2] Sorensen, P.A. and Lanter, D.P. 1993. Two algorithms for 
determining partial visibility and reducing data structure 
induced error in viewshed analysis. Photogrammetric 
Engineering and Remote Sensing. 59(7):1149-1160.  

[3] Warn, S. 2011. High performance geospatial analysis on 
emerging parallel architectures. PhD Thesis, U. of Arkansas. 

[4] Franklin, W. R. 2002. Siting Observers on Terrain. In 
Advances in Spatial Data Handling: 10th International 
Symposium on Spatial Data Handling, edited by D. 
Richardson and P. van Oosterom, 109–120.  
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SRC: City-Scale Mapping of Pets Using Georeferenced
Images

Aaron San Jose and Eduardo Hernandez (Mentor: Shawn Newsam)
University of California, Merced

5200 N. Lake Rd., Merced, CA 95343
[asanjose,ehernandez58]@ucmerced.edu

ABSTRACT
We investigate the mapping of pet activity using social me-
dia. Specifically, we perform cat and dog detection in a large
collection of georeferenced images in San Francisco. We
compare detection based on keyword search in user-supplied
tags to detection based on image content using state-of-the-
art deep-learning classification methods. The resulting city-
scale spatial distribution of cat and dog activity makes sense
based on our knowledge of the region. Our approach repre-
sents a general framework for mapping phenomena that are
difficult to observe through traditional means.

CCS Concepts
•Information systems→Geographic information sys-
tems; •Computing methodologies → Object detection;

Keywords
Georeferenced images, geographic knowledge discovery

1. INTRODUCTION
There is a plethora of untapped data in Internet social 

media feeds that could be used to answer various interest-
ing questions. For example, images uploaded on social me-
dia feeds are frequently of pets. Given a large number of 
such images, with their locations, one should be able to map 
where pets are. This is the focus of our project. We perform 
pet detection in a large number of georeferenced social me-
dia images. Mapping these detections allows us to analyze 
spatial trends of pet activity at a city scale.

The key technical challenge is automating the detection. 
We investigate two different approaches to this problem 1) 
applying text-based search algorithms to the user-submitted 
tag descriptors of the images, and 2) applying computer vi-
sion classification algorithms to the actual image content.

2. APPROACH

We seek to label each image as containing a dog or a cat.
We then assign this detection to the location of the image
in order to perform the spatial analysis.

2.1 Text-Based Detection
In order to classify the images through their text tags, we

use keyword search algorithms. Each image has a varying
number of text tags that have been provided by the user. If
our search term, for example “dog”, matches any of the tags,
we mark the image as a detection. Text tags do not neces-
sarily describe exactly what is in the image or completely
prove that a pet is in the photo or not, though.

2.2 Image-Based Detection
Deep learning is recent, effective method of image classifi-

cation that creates models based off of “learned features” of
a visual class using convolutional neural networks (CNNs).
CNNs are trained to recognize classes in a supervised fash-
ion. A model is learned by feeding it labeled images. It can
then be used to perform detection in unseen images. The
training process involves tuning layers of neurons that per-
form simple tasks, like image convolution or subsampling,
that culminate in a larger task, like image classification.

CNNs are useful as non-binary classifiers, or classifiers
with multiple classes. During prediction, a CNN will pro-
duce a vector of size N , where N is the number of classes,
of the probabilities that the image belongs to each class. A
CNN usually will normalize the probabilities so they sum to
one using a softmax function, and then return an encoding
that gives the label for the class with the highest probabil-
ity. The actual return value is another vector of size N that
contains all zero values except for one index that holds the
value one. This index indicates the predicted class.

We apply a CNN that has been trained to recognize a
large number of visual classes including dogs and cats. This
also includes specific breeds.

3. EXPERIMENTAL RESULTS
We applied the proposed approach to over one million

Flickr images of San Francisco taken between 2008 and 2015.
For the text-based detection, we also used specific dog

breeds (e.g., “terrier”,“hound”) and dog synonyms (“canine”)
as keywords to detect dogs. Similarly, we used specific cat
breeds (e.g, “Siamese”, “Egyptian”) and cat synonyms (“fe-
line”) for detecting cats. Rows two and three of Table 1
show the number of cat and dog detections per year based
on performing keyword search on the user-provided tags.

For the image-based detection, we used a CNN called
Inception-v3 [2] that has been trained on the ImageNet Large
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Table 1: Rows two through five indicate the number of detections. The last row shows the total images.
Approach 2008 2009 2010 2011 2012 2013 2014 2015 Total
Text Cat 217 272 78 235 128 177 217 177 1501
Text Dog 624 537 196 722 323 456 252 199 3309
Image Cat 258 313 79 426 240 464 351 396 2527
Image Dog 735 941 228 1554 891 1486 901 1069 7805

Total Photos 158720 184742 61942 202154 116826 195390 143824 72784 1136382

(a) Text Cat (b) Text Dog (c) Image Cat (d) Image Dog

Figure 1: Per-zip code activity mapping. Red, yellow, and blue indicate high, medium, and low activity. (a)
and (b) are the results of text-based detection and (c) and (d) are of image-based.

Scale Visualization Dataset [1]. This dataset contains 1000
different classes, including various breeds of cats and dogs.
The Inception-v3 CNN returns the five most likely classes
for an image and we mark a detection if any of these five
classes are related to cats or dogs. This network has been
shown to be very effective, achieving an error rate of just
3.46% for the top five predictions [2] on the 1000 class Im-
ageNet data set. Rows four and five of Table 1 show the
number of cat and dog detections per year in our data set
based on image content.

We aggregated the detections by zip code to perform our
spatial analysis. We calculated a pet activity value for each
zip code by normalizing the number of detections by the
total number of Flickr images in that zip code. Fig. 1 shows
the resulting maps where each of the 26 zip codes is labeled
as having low (blue), medium (yellow), or high (red) activity.

4. DISCUSSION
We do not have a ground truth to evaluate our results.

However, we make the following observations based on Table
1 and Fig. 1.

Our image-based method results in over twice as many de-
tections as the text-based. This demonstrates the potential
benefit of exploiting the image content through state-of-the-
start image understanding.

Both methods, text- and image-based, result in more dog
detections. This could indicate that there are more dogs in
San Francisco than cats (or, really, that people take more
pictures of dogs).

We observe the following spatial patterns in Fig. 1.

• The two methods result in very similar spatial distri-
butions for each type of pet. Compare the similarities
between the text- and image-based cat activity in Figs.
1(a) and 1(c) and text- and image-based dog activity
in Figs. 1(b) and 1(d). While image content results
in more overall detections, the spatial distributions of
the two methods are very much in agreement.

• Dog activity is high where there are parks. Fig. 1(d)
shows high dog activity in 94132 which includes the siz-

able Lake Merced Park and 94134 which includes the
sizable John McLaren Park and medium dog activity
in 94122 which includes Golden Gate Park and 94129
which include the Presidio. In contrast, as seen in Fig.
1(c), cat activity is lower in the zip codes with parks
and higher in more residential zip codes such as 94116
which contains the Sunset District and 94112 which
contains Ingleside, Excelsior, and the Outer Mission.
• Despite of there being more dog detections overall (Ta-

ble 1), they are more concentrated. Compare the dog
detections in Figs. 1(b) and 1(d) with the cat detec-
tions in Figs. 1(a) and 1(c).
• Fisherman’s Wharf, North Beach, and the Embarcadero,

tourist regions in 94133 and 94111, contain very little
pet activity.
• We detect high pet activity in 94102 which is down-

town and very urban. This is somewhat surprising and
warrants further investigation.

5. CONCLUSION
We demonstrated a framework that uses georeferenced so-

cial media to measure phenomena that might not be ob-
servable through other means. Specifically, we explored two
methods to detect pets in Flickr images and then mapped
the results at the city-scale. The spatial distributions make
sense based on our knowledge of the region.

6. ACKNOWLEDGMENTS
This work was funded in part by an NSF CAREER grant,

#IIS-1150115, through an REU supplement. We would like
to thank the UC Merced Spatial Analysis and Research Cen-
ter (SpARC) for help with preparing the maps.
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[1] O. Russakovsky et al. ImageNet Large Scale Visual
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[2] C. Szegedy et al. Rethinking the inception architecture
for computer vision. CoRR, abs/1512.00567, 2015.
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Ashwin Shashidharan
∗
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ABSTRACT
Geosimulations using computer simulation models provide
researchers an effective way to study complex geographic
phenomena and their outcomes. These simulations allow for
scenario based exploration by capturing spatial and tempo-
ral relationships between various geographic processes in a
region. However, current approaches to geosimulation limit
manipulating model input and exploring alternative scenar-
ios by controlling the simulation model at runtime. This
paper proposes a computational steering system for geosim-
ulation models and presents a prototype, tFUTURES, de-
veloped for the FUTURES Urban Growth Model (UGM).
By allowing tangible inputs and implementing mechanisms
to control model execution, this system solves the problem
of lack of user-interactivity experienced at runtime. We de-
velop a web interface and leverage the WMS, WFS-t and
WPS OGC services to help visualize, modify and execute
geosimulations. We define new steering controls within this
interface and implement application checkpointing, allowing
a user to provide new steering input and execute steering
actions that can pause, advance or rollback a geosimulation
and display the model outcomes in near real-time.

CCS Concepts
•General and reference→Design; •Computing method-
ologies→ Real-time simulation; Interactive simulation; Sci-
entific visualization; •Computer systems organization
→ Special purpose systems;

Keywords
Geosimulation, Computational steering, Visualization

1. INTRODUCTION
∗The author acknowledges the support and guidance re-
ceived from his advisors Dr. Ranga Raju Vatsavai and Dr. 
Ross K. Meentemeyer.

Modeling and simulation has revolutionized many scien-
tific and engineering fields in the past two decades. In re-
cent years, geosimulation has emerged at the intersection of
Geographic Information Science, Complex Systems Theory
and Computer Science. Geosimulations [1], where real-world
processes are modeled and studied over time, have been suc-
cessfully applied in urban studies, epidemiology, land use
and land cover changes, and climate change studies. Using
geosimulations, “what if” scenarios can be studied to under-
stand potential impacts of geographic events. However, such
scenario analyses rely on static inputs prepared beforehand
by GI scientists.

Computational steering [3, 4] is a mechanism that sup-
ports interactivity in simulations while they are in progress.
Specifically, it allows for manipulation of the internal state of
a simulation and its inputs during execution. For instance,
in a UGM geosimulation, computational steering mecha-
nisms could be used to specify new zoning regulations and
transportation networks to an in-progress simulation. Fur-
ther, the ability to visualize the impact on development pat-
terns in real-time, could be used to tweak the inputs for sub-
sequent time-steps or in retrospect. Such interactivity helps
improve the quality of simulations, allows on-the-fly “what
if” scenarios, and improves computational efficiency. How-
ever, little work has been carried out to integrate compu-
tational steering and geosimulations with visualization sup-
port [5]. In our system, tFUTURES, we attempt to bridge
this gap by supporting computational steering for geosimu-
lations from a javascript enabled web browser. Finally, we
enable application checkpointing in geosimulations and sup-
port steering actions that can pause, advance or rollback a
geosimulation from any such browser.

2. tFUTURES SYSTEM
The tFUTURES system is designed to support practition-

ers and users who wish to simulate and understand urban-
ization under varying human decision scenarios. It supports
tactile input to be provided to the FUTURES UGM [2] and
the analysis of their outcomes in real-time. The tFUTURES
computational steering system comprises of three compo-
nents as shown in Fig. 1, namely (i) Monitoring server; (ii)
Steering client; and (iii) Visualization service.

2.1 Monitoring Server
The monitoring server acts as an interface between the

visualization service and the steering client in the system. It
receives WPS requests generated by the visualization service
and forwards them to the steering client in the UGM.
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Visualization 
Service

Monitoring 
Server

WPS request

Simulation 
ModelWFS-t request

signal

WMS request/response

Steering 
Client

Figure 1: tFUTURES System Architecture.

2.1.1 Capabilities
The monitoring server is setup and initialized as a signal

handler hub capable of routing steering actions to the UGM.
It is aware of the steering controls available to a user at run-
time and maps steering actions to specific signal handlers in
the steering client.

2.1.2 Mechanism
Each steering action is an event that generates a partic-

ular type of signal. When a steering control is selected by
a user, the monitoring server interrupts the current flow of
UGM execution, and delivers a steering action to be exe-
cuted by the UGM.

2.2 Steering Client
The steering client augments the UGM code to handle

steering actions and user-defined steering input. It defines
signal handling routines to service the steering actions for-
warded by the monitoring server. Specifically, the steer-
ing client embedded in a UGM allows (i) modifying UGM
simulation state; (ii) altering the control flow of the UGM
simulation at runtime; and (iii) periodically checkpointing
simulation state to enable rollback of the UGM simulation.

2.2.1 Capabilities
The steering client implements handling routines that asyn-

chronously process signals delivered to the UGM during ex-
ecution. The steering controls shown in Fig. 2a are defined
as follows: (i) skipPrev: rollback the simulation by a single
time-step; (ii) restart: reset the steering input and restart
the existing simulation run; (iii) play: run the simulation
from current state till completion; (iv) skipNext: advance
the simulation by a single time-step; and (v) pause: pause
the simulation at the end of the current time-step.

2.2.2 Mechanism
When a signal is received by the steering client, the spec-

ified steering action for that signal is taken. A handler
function in the steering client implements this action for
the UGM. In the FUTURES UGM, these handlers are pre-
defined in the steering client as part of program annotation.

2.3 Visualization Service
The visualization component is a web service accessible

from a web browser on a user’s local machine. It provides
the end-user with (i) web controls for interacting with the
simulation; and (ii) on-line visualization of the simulation
results. We use the OpenLayers JavaScript library for on-
line map visualization, and develop the steering controls as
web widgets using HTML, CSS and JavaScript.

2.3.1 Capabilities
The web interface provides dynamic rendering of output

raster maps from the simulation. It also supports drawing
vector data as input to the simulation and rendering them
from within the web browser. A user can select controls from
the “Steering Controls Menu” or the “Map Controls Menu”
from within this web interface (Fig. 2).

(a) Steering Controls (b) Map Controls

Figure 2: Map and Steering Controls Menu.

2.3.2 Mechanism
To experiment with various development scenarios, a user

defines patterns using the map controls (Fig. 2b). These
map controls trigger WFS-t requests directly modifying the
UGM input. The steering controls provide the ability to run
scenarios based on these inputs in time-steps as defined by
the UGM. At the end of every steering action, the resulting
urbanization map is refreshed in the browser. The visualiza-
tion component thus, acts as an endpoint that accepts user
input and displays simulation outputs in tFUTURES.

3. CONCLUSIONS
In this paper, we show that computational steering capa-

bilities can be easily extended to geosimulations with a small
set of interacting components and minimal changes to legacy
model code. At a bare minimum, the set of interacting com-
ponents must include 1) a visualization interface with steer-
ing controls; 2) a monitoring server to intercept and relay
steering actions to the simulation; and 3) a steering client
embedded in the legacy simulation code. Finally, by inter-
twining user interactions with geosimulations, we empower
practitioners and novice users to dynamically vary model
inputs at runtime and produce desired simulation results.
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ABSTRACT
Indoor space navigation has always been an issue without 
GPS localization. Especially for complicated cases such as 
emergency evacuation and dynamic navigation, there is no 
existing efficient solution to the best of our knowledge. Lo-
calization in indoor spaces has to rely on sensing devices 
(e.g., Radio Frequency Identification(RFID) readers, WiFi 
routers, bluetooth beacons) rather than GPS, and indoor 
floor plans are more complicated than road networks. Con-
sequently, existing spatial outdoor query techniques are not 
suitable for this new challenge. However, raw data generated 
by sensing devices suffers from false negatives and errors. As 
a result, filtering methods are necessary for accurate local-
ization.

We propose a novel dynamic shortest path navigation 
strategy to enable efficient navigation for emergency evacu-
ation in indoor spaces. This strategy achieves optimal time 
efficiency by: 1) using a Bayesian inference based concur-
rent model, which integrates dynamic shortest path search-
ing into the filtering process, thus achieving an efficient and 
accurate search for any time-sensitive situation; 2) storing 
alternative parent nodes along the shortest path search for 
a fast, dynamic search.

We use both particle filters and the Kalman filter to study 
which one is more suitable for dynamic environments. In 
general, we develop an innovative, dynamic shortest path 
navigation solution based on Bayesian inference localization.

1. INTRODUCTION
People spend most of their time in indoor spaces. Indoor 

spaces are growing larger and more complex (e.g., multi-
functional shopping malls, NYC subways, etc.). Therefore, 
users will be likely to use spatial navigation mobile apps to 
find friends or Points Of Interest (POI) in indoor places. In 
extreme cases like fires or terrorist attacks, indoor spatial 
navigation could even save lives. However, existing spatial 
query solutions [2] for Euclidean distances or road networks 
cannot be applied to indoor spaces because of the lack of

GPS signals. Furthermore, indoor floor plans are more com-
plicated with multiple levels involved. The uses of sensing
devices have expanded beyond traditional fields and made
indoor localization possible. Take RFID technologies as an
example. When a tag is in the detection range of a reader,
the reader recognizes the tag and generates a reading record.
Several types of deviations can be observed from sensor de-
vices, such as sensitivity errors, bias, noise and so on. As
a result, the raw data generated by sensing devices can not
be used for localization directly. Therefore, we use Bayesian
inference based filtering methods, such as particle filters [4],
to accurately calculate the position of a user.

More importantly, in our research, we focus on dynamic
navigation rather than static spatial queries. Dynamic nav-
igation is more suitable for indoor environments for the fol-
lowing two reasons: 1) Indoor routes could change at any
time, especially during an emergency, during which a route
could be blocked in a short time. In such scenarios, static
solutions would not be workable, because the system has to
calculate all over again; 2) Sensing devices localization is not
as good as GPS. They have to correct themselves sometimes,
which will affect the navigation process.

Based on the aforementioned reasons, we apply a con-
current model to Bayesian inference to accelerate dynamic
navigation. There are two reasons why we apply this model:
1) In event-driven cases, there is a high possibility that the
user is in a room or in a highly-recognizable space. We do
not need to know the exact location of a user to navigate;
especially in an emergency situation, we need to navigate
as soon as possible; 2) Bayesian inference has an updating
phase. In time-sensitive cases, it is crucial to take advantage
of this phase and accelerate the whole process.

2. APPROACH AND UNIQUENESS
2.1 Design

Our accelerated dynamic navigation has two components:
Bayesian-based Concurrent Navigation and Redundant Track-
ing method.

Bayesian-based Concurrent Navigation is based on Bayesian
Inference methods, and it is combined with a Bayesian up-
dating phase. More generally, it could be added to any lo-
calization method with an updating phase involved. Redun-
dant Tracking is applicable to any dynamic queries. It is
extremely suitable for indoor spaces.

2.1.1 Bayesian-based Concurrent Navigation
Each time a position is calculated, multiple resamplings

/re-calculations are required for Bayesian Inference meth-
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Algorithm 1 Bayesian inference-based dynamic navigation

1. retrieve Objs’s readings from the data collector
2. for every second of readings do
3. Initialization
4. Normalize the weights of Objs
5. Resampling/Re-calculation
6. Store locations with weight > τ (τ is the threshold)
7. Redundant Shortest Path Search
8. end for
9. return navigation based on weight and location

ods. In the process of resampling/re-calculation, a user has
to wait for a response, which is unacceptable in an emer-
gency. Here, we propose concurrent dynamic indoor naviga-
tion combined with Bayesian inference.

We use particle filters and the Kalman filter as examples.
Particle filters Traditional particle filters method con-

sists of three phases: initialization, particles updating, and
particles resampling. At first, a set of particles are uni-
formly distributed in the search area. Then the particles are
updated with Gaussian distribution. After updating, the re-
sampling process will remove particles with lower weight and
replicate particles with higher weight. In the initial process,
a user has to wait enough rounds of resampling for accu-
rate localization. We take advantage of this time period to
conduct dynamic shortest path searches on all potential lo-
cations. We start as soon as we get the first reading, and
search a shortest path from every possible location. We also
maintain all possible paths to avoid further calculation.

The Kalman filter The Kalman filter uses a series of
measurements observed over time. It assumes an object’s
speed is a Gaussian variable, and for each reading, the al-
gorithm recursively enumerates all possibilities. At last, the
algorithm integrates the pdf (probability distribution func-
tion) of the object’s possible locations. For each update
phase, the current priori prediction is combined with current
observation information to refine the state estimate. Same
as particle filters, we integrate our dynamic navigation into
the state prediction phase.

2.1.2 Redundant Tracking Approach
We assume the routes are constantly changing. In order

to do the incremental search only, our algorithm uses “re-
dundant” storage to keep track of potential shortest paths
along the way. For each visited node, we store λ alternative
parent nodes (λ is the number of alternatives, which is a
parameter).

Even though redundancy is required for this approach,
creating extra storage will not be a burden for the search
process because indoor floor plans are relatively smaller than
outdoor road networks.

Algorithm 1 shows the general structure to integrate re-
dundant tracking into Bayesian inference. We check all pos-
sibilities for each Bayesian updating. When the current pos-
sibility is good enough for a search, we execute redundant
shortest path search instantly.

2.2 Data Settings
In our research, we focus on the setting of an indoor envi-

ronment and RFID technologies. A number of RFID readers
are deployed along the hallway. A user is attached with an
RFID tag, which can be recognized by any reader when the
user passes the reader’s detection range. The system will
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Figure 1: Varying the number of moving objects.

store all raw readings generated by readers.

2.3 Uniqueness
While other researchers have made use of Bayesian Infer-

ence to localize indoor targets, to the best of our knowl-
edge there is no previous work that combines Bayesian in-
ference with dynamic indoor navigation. In addition, previ-
ous works pay more attention to static queries (e.g., kNN,
range query), while our work focuses on dynamic queries to
support indoor navigation. An approach based on dynamic
settings may be more practical for indoor queries.

3. PRELIMINARY EXPERIMENTS AND FU-
TURE WORK

We carry out experimental evaluations using the data gen-
erated by real-world parameters, and compare the results
with other symbolic model-based solutions [3].

We test the effect of particle filters and the Kalman fil-
ter with various parameters (e.g. query window size, num-
ber of particles, number of moving objects, activation range,
continuous query, etc.). We use PF, KF, and SM to repre-
sent the curves of the particle filter-based method, Kalman
filter-based method, and symbolic model-based method, re-
spectively. Due to limitations of space, we only show 1) the
Kullback-Leibler (KL) divergence of range query; 2) hit rate
of kNN query by varying the number of moving objects.
Figure 1 demonstrates both filtering methods have better
scalability than the symbolic model based solution.

Our preliminary results show that particle filters and the
Kalman filter based spatial queries are efficient and accurate
enough to extend to dynamic navigation. We will compare
the speed of particle filters and the Kalman filter to see
which one is more suitable for dynamic navigation.
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Combining the functionality of mobile devices (smartphones and tablets), wireless communication (Wi-Fi,
Bluetooth and 3/4G), and positioning technologies (GPS, Assisted GPS and GLONASS) results in a new era
of mobile geographic information systems (GIS) that aim at providing various invaluable services, including
location-based services, intelligent transportation systems, logistics management, security and safety, etc. Many
mobile GIS applications have been developed to solve challenging real-world problems and improve our quality
of life.

MobiGIS 2016 (http://www.mobigis.org) was held in conjunction with the 24th ACM SIGSPATIAL In-
ternational Conference on Advances in Geographic Information Systems (SIGSPATIAL 2016) on October 31,
2016 in San Francisco, California, USA. It aims at bringing together researchers and practitioners from the GIS
community, the mobile computing community, and the data management community. Many current research
areas, such as spatio-temporal databases, spatio-temporal data mining, mobile cloud computing, remote sensing,
participatory sensing, or social networks, raise research problems that lie at the boundary between these three
communities. MobiGIS’s goal is to foster an opportunity for researchers from these three communities to gather
and discuss ideas that will shape and influence these emerging GIS-related research areas.

MobiGIS 2016 has accepted 11 research papers for oral presentations (30 minutes for each full paper and 20
minutes for each short paper). MobiGIS 2016 was a one-day workshop consisting of four sessions: (1) Trajec-
tory Computing, (2) Keynote and Location-based Query Processing, (3) Mobile Data Analytics, and (4) Urban
Computing, Mapping, and Positioning. We would like to express our special thanks to the keynote speaker,
Prof. Maria Luisa Damiani (University of Milan, Italy), who gave a very interesting and inspiring talk “Spatial
Trajectories Segmentation: Trends and Challenges”.

We would also like to thank the authors for publishing and presenting their papers in MobiGIS 2016, and
the program committee members and external reviewers for their professional evaluation and help in the paper
review process. We hope that the proceedings of MobiGIS 2016 will inspire new research ideas, and that you
will enjoy reading them.
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The ACM SIGSPATIAL International Workshop on Geostreaming (IWGS) was held for the seventh time
in conjunction with the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Infor-
mation Systems (ACMGIS 2016). The workshop has been a successful event that attracted participants from
both academia and industry. The workshop addressed topics that are at the intersection of data streaming and
geospatial systems. The workshop fostered an environment where geospatial researchers can benefit from the
advances in geosensing technologies and data streaming systems.

We are entering the era of ”big data” thanks to the exponential growth and availability of structured and
unstructured data, among which a large amount are real-time streaming data emitted from sensors, imagery and
mobile devices. In addition to the temporal nature of stream data, various sources provide stream data that has
geographical locations and/or spatial extents, such as geotagging twitter streams, mobile GPS location streams,
spatial temporal image streams, and so on. On one hand, this amount of streamed data has been a major propeller
to advance the state of the art in geographic information systems. On the other hand, the ability to process, mine,
and analyze that massive amount of data in a timely manner prevented researchers from making full use of the
incoming stream data. The geostreaming term refers to the ongoing effort in academia and industry to process,
mine and analyze stream data with geographic and spatial information.

This workshop addresses the research communities in both stream processing and geographic information
systems. It brings together experts in the field from academia, industry and research labs to discuss the lessons
they have learned over the years, to demonstrate what they have achieved so far, and to plan for the future of
geostreaming.

The workshop featured two keynotes. The first keynote was delivered by Roger Zimmermann from NUS,
who reflected on the fascinating work at his research lab on fusion and analysis of data streams received from
physical sensors and social media, discussing the the challenges in addressing this problem and corresponding
solutions his team have developed. The second keynote was offered by Yu Zheng, a research manager at Mi-
crosoft Research China. He defined urban computing as the process of acquisition, integration, and analysis
of big and heterogeneous data generated by a diversity of sources in cities to tackle urban challenges, e.g., air
pollution, energy consumption and traffic congestion. Urban computing connects unobtrusive and ubiquitous
sensing technologies, advanced data management and analytics models, and novel visualization methods, to
create win-win-win solutions that improve urban environment, human life quality, and city operation systems.
According to Zheng, this field is an inter-disciplinary field where computer science meets urban planning, trans-
portation, economy, the environment, sociology, and energy, etc., in the context of urban spaces. In this talk, he
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provided an overview of a framework for urban computing, and discussed its key challenges and methodologies
from computer science perspective. He also presented a variety of urban computing applications, ranging from
big data-driven environmental protection to transportation, from urban planning to urban economy. This keynote
was very well attended and engaging.

The call for paper resulted in 11 submissions of very high quality research papers. A program committee
of 6 members reviewed the submissions and as a result 10 papers were accepted given the time constraints
of the workshop. On average, over 20 attendees were present at every session of the workshop, although in
certain sessions the attendance exceeded 60. The topics presented in the workshop include but are not limited
to: Moving Object Queries, Geostream Data Processing, Mining Geostreams, and Trajectory Analysis.

13



    

SIGSPATIAL & ACM
join today!

www.acm.orgwww.sigspatial.org

The ACM Special Interest Group on Spatial Information (SIGSPATIAL) addresses issues related to the acquisition, management, and processing
of spatially-related information with a focus on algorithmic, geometric, and visual considerations.  The scope includes, but is not limited to,  geo-
graphic information systems (GIS). 

The Association for Computing Machinery (ACM) is an educational and scientific computing society which works to advance computing as a
science and a profession.  Benefits include subscriptions to Communications of the ACM, MemberNet, TechNews and CareerNews, full and unlimited
access to online courses and books, discounts on conferences and the option to subscribe to the ACM Digital Library.

payment information

Mailing List Restriction
ACM occasionally makes its mailing list available to computer-related 
organizations, educational institutions and sister societies.  All email 
addresses remain strictly confidential.  Check one of the following if
you wish to restrict the use of your name:

� ACM announcements only
� ACM and other sister society announcements
� ACM subscription and renewal notices only SIGAPP

Questions?  Contact:
ACM Headquarters

2 Penn Plaza, Suite 701
New York, NY 10121-0701

voice:  212-626-0500
fax:  212-944-1318

email:  acmhelp@acm.org

Remit to:
ACM

General Post Office
P.O. Box 30777

New York, NY 10087-0777

www.acm.org/joinsigs
Advancing Computing as a Science & Profession

� SIGSPATIAL (ACM Member). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $ 15

� SIGSPATIAL (ACM Student Member & Non-ACM Student Member). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $ 6

� SIGSPATIAL (Non-ACM Member). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $ 15

� ACM Professional Membership ($99) & SIGSPATIAL ($15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $114

� ACM Professional Membership ($99) & SIGSPATIAL ($15) & ACM Digital Library ($99) . . . . . . . . . . . . . . . . . . . . . . . $213

� ACM Student Membership ($19) & SIGSPATIAL ($6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $ 25

Name __________________________________________________

ACM Member # __________________________________________

Mailing Address __________________________________________

_______________________________________________________

City/State/Province _______________________________________

ZIP/Postal Code/Country___________________________________

Email _________________________________________________

Mobile Phone___________________________________________

Fax ____________________________________________________

Credit Card Type:           � AMEX � VISA           � MC

Credit Card # ______________________________________________

Exp. Date _________________________________________________

Signature_________________________________________________

Make check or money order payable to ACM, Inc

ACM accepts U.S. dollars or equivalent in foreign currency.  Prices include
surface delivery charge.  Expedited Air Service, which is a partial air freight
delivery service, is available outside North America.  Contact ACM for
more information.



  The SIGSPATIAL Special 

 

 

 

 

 

 

 

 

 

 

ACM SIGSPATIAL 

http://www.sigspatial.org 


	01-Front
	02-TOC
	03-message
	04-Section1
	05-SRC_papers2
	SRCReport
	SRC1
	SRC2
	SRC3
	SRC4

	06-Section2
	07-Reports
	Report_MobiGIS
	iwgs16_report

	08-SIGSPATIALMembership
	09-Back



